Skip to main content

LES and DNS of Melt Flow and Heat Transfer in Czochralski Crystal Growth

  • Conference paper
High Performance Computing in Science and Engineering ’06

Abstract

In the present work, computations of flow and heat transfer in an idealized cylindrical Czochralski configuration are conducted using Large Eddy Simulation (LES) with the flow solver FASTEST-3D developed at LSTM Erlangen. The results match well with DNS data from the literature. However, detailed data for analysis of turbulent quantities are not available. Therefore, DNS computations are conducted using the code LɛSOCC, employing explicit time marching. Preliminary simulations show the high efficiency of the solver on the NEC SX-8. Furthermore, from a study of the velocity profiles at the wall, the resolution requirements had to be corrected such that the computational grid will now consist of approximately 8 × 106 control volumes. The present run of the DNS took more than 540 hours of walltime on 8 processors. With the results, the LES computations will be thoroughly validated so that appropriate models and parameters can be chosen for efficient and accurate simulations of practically relevant cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leister, H.J. and Perić, M. (1993) Vectorized Strongly Implicit Solving Procedure for a Seven-Diagonal Coefficient Matrix, Int. Journal for Heat and Fluid Flow, vol. 4, pp. 159–172

    Article  Google Scholar 

  2. Perić, M. (1985) A Finite-Volume Method for the Prediction of Three-Dimensional Fluid Flow in Complex Ducts, PhD thesis, Imperial College, London

    Google Scholar 

  3. Stone, H.L. (1968) Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations, SIAM Journal of Numerical Analyses, vol. 5, pp. 530–558

    Article  MATH  Google Scholar 

  4. Durst, F., Schäfer, M. and Wechsler, K. (1996) Efficient Simulation of Incompressible Viscous Flows on Parallel Computers, In: Flow Simulation with High-Performance Computers, II, ed. E.H. Hirschel, Notes on Numer. Fluid Mech., vol. 52, pp. 87–101, Vieweg Verlag, Braunschweig

    Google Scholar 

  5. Durst, F. and Schäfer, M. (1996) A Parallel Block-StructuredMultigrid Method for the Prediction of Incompressible Flows, Int. Journal Num. Methods Fluids, vol. 22, pp. 549–565

    Article  MATH  Google Scholar 

  6. Breuer, M., Rodi, W. (1996) Large-Eddy Simulation of Complex Turbulent Flows of Practical Interest, In: Flow Simulation with High-Performance Computers II, ed. E.H. Hirschel, Notes on Numer. Fluid Mech., vol. 52, pp. 258–274, Vieweg Verlag, Braunschweig

    Google Scholar 

  7. Breuer, M. (1998) Large-Eddy Simulation of the Sub-Critical Flow Past a Circular Cylinder: Numerical and Modeling Aspects, Int. J. for Numer. Methods in Fluids, vol. 28, pp. 1281–1302

    Article  MATH  Google Scholar 

  8. Breuer, M. (2000) A Challenging Test Case for Large-Eddy Simulation: High Reynolds Number Circular Cylinder Flow, Int. J. of Heat and Fluid Flow, vol. 21, no. 5, pp. 648–654

    Article  Google Scholar 

  9. Breuer, M. (2002) Direkte Numerische Simulation und Large-Eddy Simulation turbulenter Strömungen auf Hochleistungsrechnern, Habilitationsschrift, Universität Erlangen-Nürnberg, Berichte aus der Strömungstechnik, ISBN: 3-8265-9958-6, Shaker Verlag, Aachen

    Google Scholar 

  10. Rhie, C.M., Chow, W.L. (1983) A Numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation, AIAA Journal, vol. 21, pp. 1525–1532

    Article  MATH  Google Scholar 

  11. Smagorinsky, J. (1963) General Circulation Experiments with the Primitive Equations, I, The Basic Experiment, Mon. Weather Rev., vol. 91, pp. 99–165

    Article  Google Scholar 

  12. Basu, B., Enger, S., Breuer, M., and Durst, F. (2000) Three-Dimensional Simulation of Flow and Thermal Field in a Czochralski Melt Using a Block-Structured Finite-Volume Method, Journal of Crystal Growth, vol. 219, pp. 123–143

    Article  Google Scholar 

  13. Enger, S., Basu, B., Breuer, M., and Durst, F. (2000) Numerical Study of Three-Dimensional Mixed Convection due to Buoyancy and Centrifugal Force in an Oxide Melt for Czochralski Growth, Journal of Crystal Growth, vol. 219, pp. 123–143

    Article  Google Scholar 

  14. Kumar, V. (2005) Modeling and Numerical Simulations of Complex Transport Phenomena in Crystal Growth Processes, PhD thesis, Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg

    Google Scholar 

  15. Wagner, C. (2003) Turbulente Transportvorgänge in idealisierten Czochralski-Kristallzüchtungsanordnungen, Habilitation, Lehrstuhl für Fluidmechanik, Technische Universität München

    Google Scholar 

  16. Grötzbach, G. (1983) Spatial Resolution Requirements for Direct Numerical Simulation of the Rayleigh-Benard Convection, J. Comp. Phys. vol. 49, pp. 241–264

    Article  MATH  Google Scholar 

  17. Breuer, M., Lammers, P., Zeiser, Th., Hager, G., Wellein, G.: Towards the Simulation of Turbulent Flows Over Dimples — Code Evaluation and Optimization for NEC SX-8, see rejected report which should be published in this book

    Google Scholar 

  18. Bartels, C., Breuer, M., Wechsler, K., and Durst, F. (2001) CFD-Applications on Parallel-Vector Computers: Computations of Stirred Vessel Flows, Int. J. Computers and Fluids, vol. 31, pp. 69–97

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raufeisen, A., Breuer, M., Kumar, V., Botsch, T., Durst, F. (2007). LES and DNS of Melt Flow and Heat Transfer in Czochralski Crystal Growth. In: Nagel, W.E., Jäger, W., Resch, M. (eds) High Performance Computing in Science and Engineering ’06. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36183-1_20

Download citation

Publish with us

Policies and ethics