Skip to main content

GABA and GHB Neurotransmitters in Plants and Animals

  • Chapter
Communication in Plants

Abstract

γ-Aminobutyric acid (GABA) is a four-carbon non-protein amino acid conserved from bacteria to plants and vertebrates. In the latter it is mainly known as a neurotransmitter. The enzymes that synthesize and catabolize GABA constitute a metabolic pathway known as the GABA shunt which bypasses two steps of the tricarboxylic acid cycle. Functional genomics tools using Arabidopsis as a model system revealed that the GABA shunt is imperative for normal plant development and for response to stress, and suggest roles for GABA as an important metabolite as well as a potential signaling molecule. Moreover, γ-hydroxybutyrate, a by-product of the GABA shunt and a neurotransmitter in animals, was recently discovered in plants. Here we discuss the possible roles of these two neurotransmitters in plants with focus on components that underlie their roles as signaling molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan WL, Peiris C, Brown AW, Shelp BJ (2003) Gamma-hydroxybutyrate accumulates in green tea and soybean sprouts in response to oxygen deficiency. Can J Plant Sci 83: 951–953

    CAS  Google Scholar 

  • Andre B, Hein C, Grenson M, Jauniaux JC (1993) Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae. Mol Gen Genet 237:17–25

    Article  PubMed  CAS  Google Scholar 

  • Andriamampandry C, Taleb O, Viry S, Muller C, Humbert JP, Gobaille S, Aunis D, Maitre M (2003) Cloning and characterization of a rat brain receptor that binds the endogenous neuromodulator gamma-hydroxybutyrate (GHB). FASEB J 17:1691–1693

    PubMed  CAS  Google Scholar 

  • Baum G, Lev-Yadun S, Fridmann Y, Arazi T, Katsnelson H, Zik M, Fromm H (1996) Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. EMBO J 15:2988–2996

    PubMed  CAS  Google Scholar 

  • Bermudez Moretti M, Correa Garcia S, Ramos EH, Batlle A (1995) GABA uptake in a Saccharomyces cerevisiae strain. Cell Mol Biol 41:843–849

    PubMed  CAS  Google Scholar 

  • Borden LA (1996) GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 29:335–356

    Article  PubMed  CAS  Google Scholar 

  • Bouché N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115

    Article  PubMed  CAS  Google Scholar 

  • Bouché N, Fait A, Bouchez D, Moller SG, Fromm H (2003) Mitochondrial succinic-semialdehyde dehydrogenase of the gamma-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc Natl Acad Sci USA 100:6843–6848

    Article  PubMed  CAS  Google Scholar 

  • Bouché N, Lacombe B, Fromm H (2003) GABA signaling: a conserved and ubiquitous mechanism. Trends Cell Biol 13:607–610

    Article  PubMed  CAS  Google Scholar 

  • Bouché N, Fait A, Zik M,. Fromm H (2004) The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis. Plant Mol Biol 55:315–325

    Article  PubMed  Google Scholar 

  • Boyd A, Sherman I, Sabil F (1990) The protective effect of gamma-hydroxybutyrate in regional intestinal ischemia in the hamster. Gastroenterology 99:860–862

    PubMed  CAS  Google Scholar 

  • Breitkreuz KE, Shelp BJ, Fischer WN, Schwacke R, Rentsch D (1999) Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana. FEBS Lett 450:280–284

    Article  PubMed  CAS  Google Scholar 

  • Breitkreuz KE, Allan WL, Van Cauwenberghe OR, Jakobs C, Talibi D, Andre B, Shelp BJ (2003) A novel gamma-hydroxybutyrate dehydrogenase: identification and expression of an Arabidopsis cDNA and potential role under oxygen deficiency. J Biol Chem 278:41552–41556

    Article  PubMed  CAS  Google Scholar 

  • Buckel W (2001) Unusual enzymes involved in five pathways of glutamate fermentation. Appl Microbiol Biotechnol 57:263–273

    Article  PubMed  CAS  Google Scholar 

  • Busch K, Fromm H (1999) Plant succinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides. Plant Physiol 121:589–597

    Article  PubMed  CAS  Google Scholar 

  • Calver AR, Medhurst AD, Robbins MJ, Charles KJ, Evans ML, Harrison DC, Stammers M, Hughes SA, Hervieu G, Couve A, Moss SJ, Middlemiss DN, Pangalos MN (2000) The expression of GABA(B1) and GABA(B2) receptor subunits in the CNS differs from that in peripheral tissues. Neuroscience 100:155–170

    Article  PubMed  CAS  Google Scholar 

  • Chinopoulos C, Tretter L, Adam-Vizi V (1999) Depolarization of in situ mitochondria due to hydrogen peroxide-induced oxidative stress in nerve terminals: inhibition of alphaketoglutarate dehydrogenase. J Neurochem 73:220–228

    Article  PubMed  CAS  Google Scholar 

  • Conti F, Minelli A, Melone M (2004) GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. Brain Res Brain Res Rev 45:196–212

    Article  PubMed  CAS  Google Scholar 

  • Fait A, Yellin A, Fromm H (2005) GABA shunt deficiencies and accumulation of reactive oxygen intermediates: insight from Arabidopsis mutants. FEBS Lett 579:415–420

    Article  PubMed  CAS  Google Scholar 

  • Fischer WN, Kwart M, Hummel S, Frommer WB (1995) Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis. J Biol Chem 270:16315–16320

    Article  PubMed  CAS  Google Scholar 

  • Genova ML, Merlo Pich M, Bernacchia A, Bianchi C, Biondi A, Bovina C, Ida Falasca A, Formiggini AG, Parenti Castelli G, Lenaz G (2004) The Mitochondrial production of reactive oxygen species in relation to aging and pathology. Ann NY Acad Sci 1011: 86–100

    Article  PubMed  CAS  Google Scholar 

  • Gibson KM, Schor DS, Gupta M, Guerand WS, Senephansiri H, Burlingame TG, Bartels H, Hogema BM, Bottiglieri T, Froestl W, Snead OC, Grompe M, Jakobs C (2002) Focal neurometabolic alterations in mice deficient for succinate semialdehyde dehydrogenase. J Neurochem 81:71–79

    Article  PubMed  CAS  Google Scholar 

  • Gobaille S, Schleef C, Hechler V, Viry S, Aunis D, Maitre M (2002) Gamma-hydroxybutyrate increases tryptophan availability and potentiates serotonin turnover in rat brain. Life Sci 70:2101–2112

    Article  PubMed  CAS  Google Scholar 

  • Godin Y, Mark J, Heiner H, Mandel P (1969) Catabolism of gamma-hydroxybutyrate in rat brain. J Physiol (Paris) 61:134–135

    Google Scholar 

  • Grallath S, Weimar T, Meyer A, Gumy C, Suter-Grotemeyer M, Neuhaus JM, Rentsch D (2005) The AtProT family: compatible solute transporters with similar substrate specificity but differential expression patterns. Plant Physiol 137:117–26

    Article  PubMed  CAS  Google Scholar 

  • Gupta M, Greven R, Jansen EE, Jakobs C, Hogema BM, Froestl W, Snead OC, Bartels H, Grompe M, Gibson KM (2002) Therapeutic intervention in mice deficient for succinate semialdehyde dehydrogenase (gamma-hydroxybutyric aciduria). J Pharmacol Exp Ther 302:180–187

    Article  PubMed  CAS  Google Scholar 

  • Gupta M, Hogema BM, Grompe M, Bottiglieri TG, Concas A, Biggio G, Sogliano C, Rigamonti AE, Pearl PL, Snead OC 3rd, Jakobs C, Gibson KM (2003) Murine succinate semialdehyde dehydrogenase deficiency. Ann Neurol 54:S81–90

    Article  PubMed  CAS  Google Scholar 

  • Hedou G, Chasserot-Golaz S, Kemmel V, Gobaille S, Roussel G, Artault JC, Andriamampandry C, Aunis D, Maitre M (2000) Immunohistochemical studies of the localization of neurons containing the enzyme that synthesizes dopamine, GABA, or gamma-hydroxybutyrate in the rat substantia nigra and striatum. J Comp Neurol 426: 549–560

    Article  PubMed  CAS  Google Scholar 

  • Hogema BM, Gupta M, Senephansiri H, Burlingame TG, Taylor M, Jakobs C, Schutgens RB, Froest lW, Snead OC, Diaz-Arrastia R, Bottiglieri T, Grompe M, Gibson KM (2001) Pharmacologic rescue of lethal seizures in mice deficient in succinate semialdehyde dehydrogenase. Nat Genet 29:212–216

    Article  PubMed  CAS  Google Scholar 

  • Howard SG, Feigenbaum JJ (1997) Effect of gamma-hydroxybutyrate on central dopamine release in vivo. A microdialysis study in awake and anesthetized animals. Biochem Pharmacol 53:103–110

    Article  PubMed  CAS  Google Scholar 

  • Jauniaux JC, Vandenbol M, Vissers S, Broman K, Grenson M (1987) Nitrogen catabolite regulation of proline permease in Saccharomyces cerevisiae: Cloning of the PUT4 gene and study of PUT4 RNA levels in wild-type and mutant strains. Eur J Biochem 164: 601–606

    Article  PubMed  CAS  Google Scholar 

  • Kanner BI, Kavanaugh MP, Bendahan A (2001) Molecular characterization of substrate-binding sites in the glutamate transporter family. Biochem Soc Trans 29:707–710

    Article  PubMed  CAS  Google Scholar 

  • Kathiresan A, Miranda J, Chinnappa CC, Reid DM (1998) γ-Aminobutyric acid promotes stem elongation in Stellaria longipes: the role of ethylene. Plant Growth Regul 26: 131–137

    Article  CAS  Google Scholar 

  • Kaufman EE, Nelson T (1991) An overview of gamma-hydroxybutyrate catabolism: the role of the cytosolic NADP(+)-dependent oxidoreductase EC 1.1.1.19 and of a mitochondrial hydroxyacid-oxoacid transhydrogenase in the initial, rate-limiting step in this pathway. Neurochem Res 16:965–974

    Article  PubMed  CAS  Google Scholar 

  • Kinnersley AM, Lin F (2000) Receptor modifiers indicate that GABA is a potential modulator of ion transport in plants. Plant Growth Regul 32:65–76

    Article  CAS  Google Scholar 

  • Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19:479–509

    Article  CAS  Google Scholar 

  • Kolin A, Brezina A, Mamelak M, Pandula E (1993) Cardioprotective action of sodium gamma-hydroxybutyrate against isoproterenol induced myocardial damage. Int J Exp Pathol 74:275–281

    PubMed  CAS  Google Scholar 

  • Laborit H (1964) Sodium 4-hydroxybutyrate. Int J Neuropharmacol 3:433–452

    Article  PubMed  CAS  Google Scholar 

  • Laborit H (1973) Gamma-hydroxybutyrate, succinic semialdehyde and sleep. Prog Neurobiol 1:255–274

    Article  Google Scholar 

  • Lacombe B, Becker D, Hedrich R, DeSalle R, Hollmann M, Kwak JM, Schroeder JI, LeNovere N, Nam HG, Spalding EP, Tester M, Turano FJ, Chiu J, Coruzzi G (2001) The identity of plant glutamate receptors. Science 292:1486–1487

    Article  PubMed  CAS  Google Scholar 

  • Lewis H, Wallace SJ (2001) Vigabatrin. Dev Med Child Neurol 43:833–835

    Article  PubMed  CAS  Google Scholar 

  • Lingenhoehl K, Brom R, Heid J, Beck P, Froestl W, Kaupmann K, Bettler B, Mosbacher J (1999) Gamma-hydroxybutyrate is a weak agonist at recombinant GABA(B) receptors. Neuropharmacology 38:1667–1673

    Article  PubMed  CAS  Google Scholar 

  • Lodwig E, Poole P (2003) Metabolism of Rhizobium bacteroids. Crit Rev Plant Sci 22:37–78

    CAS  Google Scholar 

  • Maitre M (1997) The gamma-hydroxybutyrate signalling system in brain organization and functional implications. Prog Neurobiol 51:337–361

    Article  PubMed  CAS  Google Scholar 

  • Mamelak M (1989) Gammahydroxybutyrate: an endogenous regulator of energy metabolism. Neurosci Biobehav Res 13:187–198

    Article  CAS  Google Scholar 

  • Mamelak M (1997) Neurodegeneration, sleep, and cerebral energy metabolism: a testable hypothesis. J Geriatr Psychiatr Neurol 10:29–32

    CAS  Google Scholar 

  • Mathivet P., Bernasconi R, De Barry J, Marescaux C, Bittiger H (1997) Binding characteristics of gamma-hydroxybutyric acid as a weak but selective GABAB receptor agonist. Eur J Pharmacol 321:67–75

    Article  PubMed  CAS  Google Scholar 

  • McIntire SL, Reimer RJ, Schuske K, Edwards RH, Jorgensen EM (1997) Identification and characterization of the vesicular GABA transporter. Nature 389:870–876

    Article  PubMed  CAS  Google Scholar 

  • Miller RW, McRae DG, Joy K (1991) Glutamate and gamma-aminobutyrate metabolism in isolated Rhizobium meliloti bacteroids. Mol Plant Microbe Interact 4:37–45

    CAS  Google Scholar 

  • Nakamura K, Bindokas VP, Kowlessur D, Elas M, Milstien S, Marks JD, Halpern HJ, Kang UJ (2001) Tetrahydrobiopterin scavenges superoxide in dopaminergic neurons. J Biol Chem 276:34402–34407

    Article  PubMed  CAS  Google Scholar 

  • Nulton-Persson AC, Starke DW, Mieyal JJ, Szweda LI (2003) Reversible inactivation of α-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status. Biochemistry 42:4235–4242

    Article  PubMed  CAS  Google Scholar 

  • Okun MS, Boothby LA, Bartfield RB, Doering PL (2001) GHB: an important pharmacologic and clinical update. Pharm Pharm Sci 4:167–75

    CAS  Google Scholar 

  • Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715–727

    Article  PubMed  CAS  Google Scholar 

  • Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59

    Article  PubMed  CAS  Google Scholar 

  • Poole P, Allaway D (2000) Carbon and nitrogen metabolism in Rhizobium. Adv Microb Physiol 43:117–163

    Article  PubMed  CAS  Google Scholar 

  • Prell J, Boesten B, Poole P, Priefer UB (2002) The Rhizobium leguminosarum bv. viciae VF39 gamma-aminobutyrate (GABA) aminotransferase gene (gabT) is induced by GABA and highly expressed in bacteroids. Microbiology 148:615–23

    PubMed  CAS  Google Scholar 

  • Rentsch D, Hirner B, Schmelzer E, Frommer WB (1996) Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell 8:1437–1446

    Article  PubMed  CAS  Google Scholar 

  • Richmond JE, Jorgensen EM (1999) One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat Neurosci 2:791–797

    Article  PubMed  CAS  Google Scholar 

  • Salminen SO, Streeter JG (1992) Labelling of carbon pools in Bradyrhizobium japonicum and Rhizobium leguminosarum bv. viciae bacteroids following incubation of intact nodules with 14CO2. Plant Physiol 100: 597–604

    Article  PubMed  CAS  Google Scholar 

  • Schaller M, Schaffhauser M, Sans N, Wermuth B (1999) Cloning and expression of succinic semialdehyde reductase from human brain: identity with aflatoxin B1 aldehyde reductase. Eur J Biochem 265:1056–1060

    Article  PubMed  CAS  Google Scholar 

  • Shelp BJ, Walton CS, Snedden WA, Tuin LG, Oresnik IJ, Layzell DB (1995) GABA shunt in developing soybean seeds is associated with hypoxia. Physiol Plant 94:219–228

    Article  CAS  Google Scholar 

  • Snead OC (2000) Evidence for a G protein-coupled gamma-hydroxybutyric acid receptor. J Neurochem 75:1986–1996

    Article  PubMed  CAS  Google Scholar 

  • Snedden WA, Fromm H (1999) Regulation of the γ-aminobutyrate-synthesizing enzyme, glutamate decarboxylase, by calcium/calmodulin: a mechanism for rapid activation in response to stress. In: Lerner HR (ed) Plant responses to environmental stresses: from phytohormones to genome reorganization. Dekker, New York, pp 549–574

    Google Scholar 

  • Steward FC, Thompson JF-Dent CE (1949) γ-Aminobutyric acid: a constituent of the potato tuber? Science 110:439–440

    Google Scholar 

  • Taberner PV, Rick JT, Kerkut GA (1972) The action of gamma-hydroxybutyric acid on cerebral glucose metabolism. J Neurochem 19:245–254

    Article  PubMed  CAS  Google Scholar 

  • Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4:13–25

    Article  PubMed  CAS  Google Scholar 

  • Tretter L, Adam-Vizi V (2000) Inhibition of Krebs cycle enzymes by hydrogen peroxide: a key role of α-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci 20:8972–8979

    PubMed  CAS  Google Scholar 

  • Tunnicliff G (1992) Significance of gamma-hydroxybutyric acid in the brain. Gen Pharmacol 23:1027–1034

    PubMed  CAS  Google Scholar 

  • Turano FJ, Kramer GF, Wang C (1997) The effect of methionine, ethylene, and polyamine catabolic intermediates on polyamine accumulation in detached soybean leaves. Physiol Plant 101:510–518

    Article  CAS  Google Scholar 

  • Udvardi MK, Day DA (1997) Metabolite transport across symbiotic membranes of legume nodules. Annu Rev Plant Physiol Plant Mol Biol 48:493–523

    Article  PubMed  CAS  Google Scholar 

  • Vance CP, Heichel GH (1991) Carbon in N2 fixation limitation or exquisite adaptation. Annu Rev Plant Physiol Plant Mol Biol 42:373–392

    Article  CAS  Google Scholar 

  • Visser JE, Smith DW, Moy SS, Breese GR, Friedmann T, Rothstein JD, Jinnah HA (2002) Oxidative stress and dopamine deficiency in a genetic mouse model of Lesch-Nyhan disease. Brain Res Dev Brain Res 133:127–139

    Article  PubMed  CAS  Google Scholar 

  • Vissers S, Andre B, Muyldermans F, Grenson M. (1989) Positive and negative regulatory elements control the expression of the UGA gene coding for the inducible 4-aminobutyricacid-specific permease in Saccharomyces cerevisiae. Eur J Biochem 181:357–361

    Article  PubMed  CAS  Google Scholar 

  • Walshaw DL, Wilkinson A, Mundy M, Smith M, Poole PS (1997) Regulation of the TCA cycle and the general amino acid permease by metabolism in Rhizobium leguminosarum. Microbiology 143:2209–2221

    Article  PubMed  CAS  Google Scholar 

  • Weir E (2000) Raves: a review of the culture, the drugs and the prevention of harm. CMAJ 162:1843–1848

    PubMed  CAS  Google Scholar 

  • Wigge B, Kroemer S, Gardestroem P (1993) The redox levels and subcellular distribution of pyridine nucleotides in illuminated barley leaf protoplasts studied by rapid fractionation. Physiol Plant 88:10–18

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fait, A., Yellin, A., Fromm, H. (2006). GABA and GHB Neurotransmitters in Plants and Animals. In: Baluška, F., Mancuso, S., Volkmann, D. (eds) Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28516-8_12

Download citation

Publish with us

Policies and ethics