Skip to main content

The Efficiency of Best-Response Dynamics

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10504))

Included in the following conference series:

Abstract

Best response (BR) dynamics is a natural method by which players proceed toward a pure Nash equilibrium via a local search method. The quality of the equilibrium reached may depend heavily on the order by which players are chosen to perform their best response moves. A deviator rule S is a method for selecting the next deviating player. We provide a measure for quantifying the performance of different deviator rules. The inefficiency of a deviator rule S with respect to an initial strategy profile p is the ratio between the social cost of the worst equilibrium reachable by S from p and the social cost of the best equilibrium reachable from p. The inefficiency of S is the maximum such ratio over all possible initial profiles. This inefficiency always lies between 1 and the price of anarchy.

We study the inefficiency of various deviator rules in network formation games and job scheduling games (both are congestion games, where BR dynamics always converges to a pure NE). For some classes of games, we compute optimal deviator rules. Furthermore, we define and study a new class of deviator rules, called local deviator rules. Such rules choose the next deviator as a function of a restricted set of parameters, and satisfy a natural independence condition called independence of irrelevant players. We present upper bounds on the inefficiency of some local deviator rules, and also show that for some classes of games, no local deviator rule can guarantee inefficiency lower than the price of anarchy.

This work was partially supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement number 337122.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Note that the vectors \(\mathbf {v}\) and \(\mathbf {v'}\) may correspond to different sets of players.

References

  1. Ackermann, H., Röglin, H., Vöcking, B.: Pure Nash equilibria in player-specific and weighted congestion games. Theor. Comput. Sci. 410(17), 1552–1563 (2009)

    Article  MathSciNet  Google Scholar 

  2. Alon, N., Demaine, E.D., Hajiaghayi, M., Leighton, T.: Basic network creation games. In: Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures, pp. 106–113 (2010)

    Google Scholar 

  3. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)

    Article  MathSciNet  Google Scholar 

  4. Avni, G., Kupferman, O., Tamir, T.: Network-formation games with regular objectives. J. Inf. Comput. 251, 165–178 (2016)

    Article  MathSciNet  Google Scholar 

  5. Avni, G., Tamir, T.: Cost-sharing scheduling games on restricted unrelated machines. Theor. Comput. Sci. 646, 26–39 (2016)

    Article  MathSciNet  Google Scholar 

  6. Berger, N., Feldman, M., Neiman, O., Rosenthal, M.: Dynamic inefficiency: anarchy without stability. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 57–68. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24829-0_7

    Chapter  Google Scholar 

  7. Chen, B., Gürel, S.: Efficiency analysis of load balancing games with and without activation costs. J. Sched. 15(2), 157–164 (2011)

    Article  MathSciNet  Google Scholar 

  8. Chen, H., Roughgarden, T.: Network design with weighted players. Theory Comput. Syst. 45(2), 302–324 (2009)

    Article  MathSciNet  Google Scholar 

  9. Durand, S., Gaujal, B.: Complexity and optimality of the best response algorithm in random potential games. In: Gairing, M., Savani, R. (eds.) SAGT 2016. LNCS, vol. 9928, pp. 40–51. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53354-3_4

    Chapter  Google Scholar 

  10. Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to Nash equilibria. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 502–513. Springer, Heidelberg (2003). doi:10.1007/3-540-45061-0_41

    Chapter  Google Scholar 

  11. Even-Dar, E., Mansour, Y.: Fast convergence of selfish rerouting. In: Proceedings of SODA, pp. 772–781 (2005)

    Google Scholar 

  12. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C., Shenker, S.: On a network creation game. In: Proceedings of PODC, pp. 347–351 (2003)

    Google Scholar 

  13. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: Proceedings of STOC, pp. 604–612 (2004)

    Google Scholar 

  14. Feldman, M., Tamir, T.: Conflicting congestion effects in resource allocation games. J. Oper. Res. 60(3), 529–540 (2012)

    Article  MathSciNet  Google Scholar 

  15. Feldman, M., Tamir, T.: Convergence of best-response dynamics in games with conflicting congestion effects. Inf. Process. Lett. 115(2), 112–118 (2015)

    Article  MathSciNet  Google Scholar 

  16. Fotakis, D.: Congestion games with linearly independent paths: convergence time and price of anarchy. Theory Comput. Syst. 47(1), 113–136 (2010)

    Article  MathSciNet  Google Scholar 

  17. Harks, T., Klimm, M.: On the existence of pure Nash equilibria in weighted congestion games. Math. Oper. Res. 37(3), 419–436 (2012)

    Article  MathSciNet  Google Scholar 

  18. Ieong, S., Mcgrew, R., Nudelman, E., Shoham, Y., Sun, Q., Fast, C.: A simple class of congestion games. In: Proceedinhgs of AAAI, pp. 489–494 (2005)

    Google Scholar 

  19. Kawald, B., Lenzner, P.: On dynamics in selfish network creation. In: Proceedings of SPAA, pp. 83–92 (2013)

    Google Scholar 

  20. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Comput. Sci. Rev. 3(2), 65–69 (1999)

    Article  Google Scholar 

  21. Milchtaich, I.: Congestion games with player specific payoff functions. Games Econ. Behav. 13, 111–124 (1996)

    Article  MathSciNet  Google Scholar 

  22. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143 (1996)

    Article  MathSciNet  Google Scholar 

  23. Papadimitriou, C.H.: Algorithms, games, and the internet. In: Proceedings of 33rd STOC, pp. 749–753 (2001)

    Google Scholar 

  24. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973)

    Article  MathSciNet  Google Scholar 

  25. Syrgkanis, V.: The complexity of equilibria in cost sharing games. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 366–377. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17572-5_30

    Chapter  Google Scholar 

  26. Vöcking, B.: Selfish load balancing (Chap. 20). In: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuval Snappir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Feldman, M., Snappir, Y., Tamir, T. (2017). The Efficiency of Best-Response Dynamics. In: Bilò, V., Flammini, M. (eds) Algorithmic Game Theory. SAGT 2017. Lecture Notes in Computer Science(), vol 10504. Springer, Cham. https://doi.org/10.1007/978-3-319-66700-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66700-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66699-0

  • Online ISBN: 978-3-319-66700-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics