Skip to main content

Dynamics of Water Flow in a Forest Soil: Visualization and Modelling

  • Chapter
  • First Online:
Energy and Matter Fluxes of a Spruce Forest Ecosystem

Part of the book series: Ecological Studies ((ECOLSTUD,volume 229))

Abstract

Soil water plays an important role in the terrestrial water and energy cycles. Its movement follows the gradient of the soil water potential and is most frequently described by the Richards equation. In this chapter, we focus on water fluxes in the vadose zone and model them with Water Heat and Nitrogen Simulation Model (WHNSIM) that solves the Richards equation numerically. We characterize the temporal dynamics of soil matric potentials measured at Coulissenhieb II and compare their complexity with modelled matric potential. Additionally, we summarize our previous studies on preferential flow—a common phenomenon in forest soils that cannot be modelled adequately by the Richards equation. The model WHNSIM reproduced the overall level of matric potentials in all depths. However, while it captured the complexity of the measurements in the upper soil, the matrix potentials in 90 cm depth were less complex indicating a more regular and damped signal. This result suggests that WHNSIM misses some important processes at least in the deeper soil. The soil water fluxes at Coulissenhieb II have a clear seasonal pattern with large fluxes occurring in spring during snow melt and small ones during dryer periods in summer. We could identify preferential flow in dye tracer experiments at the profile scale and attribute it mainly to macropore flow along root channels. Yet the identification and quantification of preferential pathways at the catchment scale remains challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88(17):174102

    Article  PubMed  Google Scholar 

  • Beven K, Germann P (2013) Macropores and water flow in soils revisited. Water Resour Res 49(6):3071–3092

    Article  Google Scholar 

  • Black T, Kelliher F, Wallace J, Stewart J, Monteith J, Jarvis P (1989) Processes controlling understorey evapotranspiration [and discussion]. Philos Trans R Soc Lond B Biol Sci 324(1223):207–231

    Article  Google Scholar 

  • Bogner C, Wolf B, Schlather M, Huwe B (2008) Analysing flow patterns from dye tracer experiments in a forest soil using extreme value statistics. Eur J Soil Sci 59(1):103–113

    Article  Google Scholar 

  • Bogner C, Gaul D, Kolb A, Schmiedinger I, Huwe B (2010) Investigating flow mechanisms in a forest soil by mixed-effects modelling. Eur J Soil Sci 61:1079–1090

    Article  Google Scholar 

  • Bogner C, Borken W, Huwe B (2012) Impact of preferential flow on soil chemistry of a podzol. Geoderma 175–176:37–46

    Article  Google Scholar 

  • Bogner C, y Widemann BT, Lange H (2013) Characterising flow patterns in soils by feature extraction and multiple consensus clustering. Ecol Inform 15:44–52

    Article  Google Scholar 

  • Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on c and n mineralization and fluxes in soils. Glob Chang Biol 15(4):808–824

    Article  Google Scholar 

  • Broomhead D, King GP (1986) Extracting qualitative dynamics from experimental data. Physica D 20(2-3):217–236

    Article  Google Scholar 

  • Bundt M, Widmer F, Pesaro M, Zeyer J, Blaser P (2001) Preferential flow paths: biological ‘hot spots’ in soils. Soil Biol Biochem 33(6):729–738

    Article  CAS  Google Scholar 

  • Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113(2):151–161

    Article  Google Scholar 

  • Fadlallah B, Chen B, Keil A, Príncipe J (2013) Weighted-permutation entropy: a complexity measure for time series incorporating amplitude information. Phys Rev E 87(2):022911

    Article  Google Scholar 

  • Flühler H, Durner W, Flury M (1996) Lateral solute mixing processes - a key for understanding field-scale transport of water and solutes. Geoderma 70(2-4):165–183

    Article  Google Scholar 

  • Garland J, James R, Bradley E (2014) Model-free quantification of time-series predictability. Phys Rev E 90(5):052910

    Article  Google Scholar 

  • Gaul D, Hertel D, Borken W, Matzner E, Leuschner C (2008) Effects of experimental drought on the fine root system of mature Norway spruce. For Ecol Manag 256(5):1151–1159

    Article  Google Scholar 

  • Gerstberger P, Foken T, Kalbitz K (2004) The Lehstenbach and Steinkreuz catchments in ne Bavaria, Germany. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment. Ecological studies, vol 172. Springer, Berlin, Heidelberg, pp 15–44

    Chapter  Google Scholar 

  • Golyandina N, Osipov E (2007) The “Caterpillar”-SSA method for analysis of time series with missing values. J Stat Plan Inference 137(8):2642–2653

    Article  Google Scholar 

  • Golyandina N, Nekrutkin V, Zhigljavsky AA (2001) Analysis of time series structure: SSA and related techniques. CRC, Boca Raton, FL

    Book  Google Scholar 

  • Granier A, Reichstein M, Bréda N, Janssens I, Falge E, Ciais P, Grünwald T, Aubinet M, Berbigier P, Bernhofer C et al (2007) Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric For Meteorol 143(1):123–145

    Article  Google Scholar 

  • Greiffenhagen A (2005) Einfluss der Humusauflage auf das Benetzungsverhalten und den Wasserhaushalt von Kiefernstandorten. PhD thesis, Institut für Ökologie, Technische Universität Berlin, Germany

    Google Scholar 

  • Hagedorn F, Bundt M (2002) The age of preferential flow paths. Geoderma 108(1-2):119–132

    Article  CAS  Google Scholar 

  • Hendrickx JMH, Flury M (2001) Uniform and preferential flow mechanisms in the vadose zone. In: Council NR (ed) Conceptual models of flow and transport in the fractured vadose zone. National Academy Press, Washington, DC, pp 149–187

    Google Scholar 

  • Hentschel K, Borken W, Zuber T, Bogner C, Huwe B, Matzner E (2009) Effects of soil frost on nitrogen net mineralization, soil solution chemistry and seepage losses in a temperate forest soil. Glob Chang Biol 15(4):825–836

    Article  Google Scholar 

  • Hillel D (1998) Environmental soil physics. Academic, New York

    Google Scholar 

  • Hirschi M, Seneviratne SI, Alexandrov V, Boberg F, Boroneant C, Christensen OB, Formayer H, Orlowsky B, Stepanek P (2011) Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat Geosci 4(1):17–21

    Article  CAS  Google Scholar 

  • Huwe B, Totsche K (1995) Deterministic and stochastic modelling of water, heat and nitrogen dynamics on different scales with whnsim. J Contam Hydrol 20(3):265–284

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

    Google Scholar 

  • Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, De Jeu R et al (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467(7318):951–954

    Article  CAS  PubMed  Google Scholar 

  • Kaiser K, Guggenberger G (2005) Storm flow flushing in a structured soil changes the composition of dissolved organic matter leached into the subsoil. Geoderma 127(3):177–187

    Article  CAS  Google Scholar 

  • Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon C, Kanae S, Kowalczyk E, Lawrence D et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305(5687):1138–1140

    Article  CAS  PubMed  Google Scholar 

  • Köstner B, Tenhunen J, Alsheimer M, Wedler M (2001) Controls on evapotranspiration in a spruce forest catchment of the Fichtelgebirge. In: Tenhunen J, Lenz R, Hantschel R (eds) Ecosystem approaches to landscape management in Central Europe. Ecological Studies, vol 147. Springer, Berlin, Heidelberg, pp 377–415

    Chapter  Google Scholar 

  • Lin H (2006) Temporal stability of soil moisture spatial pattern and subsurface preferential flow pathways in the shale hills catchment. Vadose Zone J 5(1):317–340

    Article  Google Scholar 

  • Lischeid G, Kolb A, Alewell C (2002) Apparent translatory flow in groundwater recharge and runoff generation. J Hydrol 265(1):195–211

    Article  CAS  Google Scholar 

  • Mahecha MD, Reichstein M, Jung M, Seneviratne SI, Zaehle S, Beer C, Braakhekke MC, Carvalhais N, Lange H, Le Maire G, Moors E (2010) Comparing observations and process-based simulations of biosphere-atmosphere exchanges on multiple timescales. J Geophys Res 115(G2):G02003

    Article  Google Scholar 

  • Matzner E, Borken W (2008) Do freeze-thaw events enhance c and n losses from soils of different ecosystems? A review. Eur J Soil Sci 59(2):274–284

    Article  Google Scholar 

  • Millington RJ, Quirk JP (1961) Permeability of porous solids. Trans Faraday Soc 57:1200–1207

    Article  CAS  Google Scholar 

  • Miralles DG, Teuling AJ, van Heerwaarden CC, de Arellano JVG (2014) Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat Geosci 7(5):345–349

    Article  CAS  Google Scholar 

  • Moore I, Burch G, Wallbrink P (1986) Preferential flow and hydraulic conductivity of forest soils. Soil Sci Soc Am J 50(4):876–881

    Article  Google Scholar 

  • Nadezhdina N, Čermák J, Gašpárek J, Nadezhdin V, Prax A (2006) Vertical and horizontal water redistribution in norway spruce (Picea abies) roots in the Moravian upland. Tree Physiol 26(10):1277–1288

    Article  PubMed  Google Scholar 

  • Nadezhdina N, David TS, David JS, Ferreira MI, Dohnal M, Tesař M, Gartner K, Leitgeb E, Nadezhdin V, Cermak J et al (2010) Trees never rest: the multiple facets of hydraulic redistribution. Ecohydrology 3(4):431–444

    Article  Google Scholar 

  • Phillips N, Oren R (2001) Intra and inter-annual variation in transpiration of a pine forest. Ecol Appl 11(2):385–396

    Article  Google Scholar 

  • Prieto I, Armas C, Pugnaire FI (2012) Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytol 193(4):830–841

    Article  PubMed  Google Scholar 

  • Roberts J (1983) Forest transpiration: a conservative hydrological process? J Hydrol 66(1):133–141

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99(3):125–161

    Article  CAS  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Sheffield J, Wood EF (2008) Global trends and variability in soil moisture and drought characteristics, 1950-2000, from observation-driven simulations of the terrestrial hydrologic cycle. J Climate 21(3):432–458

    Article  Google Scholar 

  • Sidle RC, Noguchi S, Tsuboyama Y, Laursen K (2001) A conceptual model of preferential flow systems in forested hillslopes: evidence of self-organization. Hydrol Process 15(10):1675–1692

    Article  Google Scholar 

  • Suseela V, Conant RT, Wallenstein MD, Dukes JS (2012) Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Glob Chang Biol 18(1):336–348

    Article  Google Scholar 

  • Taylor CM, de Jeu RA, Guichard F, Harris PP, Dorigo WA (2012) Afternoon rain more likely over drier soils. Nature 489(7416):423–426

    Article  CAS  PubMed  Google Scholar 

  • Warren JM, Meinzer FC, Brooks JR, Domec JC, Coulombe R (2007) Hydraulic redistribution of soil water in two old-growth coniferous forests: quantifying patterns and controls. New Phytol 173(4):753–765

    Article  PubMed  Google Scholar 

  • Weyer C, Peiffer S, Schulze K, Borken W, Lischeid G (2014) Catchments as heterogeneous and multi-species reactors: an integral approach for identifying biogeochemical hot-spots at the catchment scale. J Hydrol 519:1560–1571

    Article  CAS  Google Scholar 

  • Zirlewagen D, von Wilpert K (2001) Modeling water and ion fluxes in a highly structured, mixed-species stand. For Ecol Manag 143(1):27–37

    Article  Google Scholar 

  • Zuber T (2007) Untersuchungen zum Wasserhaushalt eines Fichtenwaldstandorts unter Berücksichtigung der Humusauflage. PhD thesis, University of Bayreuth, Germany

    Google Scholar 

Download references

Acknowledgements

We thank Uwe Hell, Andreas Kolb and Gerhard Müller for assistance in the field. Dr. Tobias Zuber contributed to the initial model setup. This research was supported by the German Science Foundation (DFG Research Unit 561, mainly Hu 636/11-2,3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Bogner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bogner, C., Aufgebauer, B., Archner, O., Huwe, B. (2017). Dynamics of Water Flow in a Forest Soil: Visualization and Modelling. In: Foken, T. (eds) Energy and Matter Fluxes of a Spruce Forest Ecosystem. Ecological Studies, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-49389-3_7

Download citation

Publish with us

Policies and ethics