Skip to main content

Convexification of Learning from Constraints

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9796))

Included in the following conference series:

Abstract

Regularized empirical risk minimization with constrained labels (in contrast to fixed labels) is a remarkably general abstraction of learning. For common loss and regularization functions, this optimization problem assumes the form of a mixed integer program (MIP) whose objective function is non-convex. In this form, the problem is resistant to standard optimization techniques. We construct MIPs with the same solutions whose objective functions are convex. Specifically, we characterize the tightest convex extension of the objective function, given by the Legendre-Fenchel biconjugate. Computing values of this tightest convex extension is NP-hard. However, by applying our characterization to every function in an additive decomposition of the objective function, we obtain a class of looser convex extensions that can be computed efficiently. For some decompositions, common loss and regularization functions, we derive a closed form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bach, F.: Learning with submodular functions: a convex optimization perspective. Found. Trends Mach. Learn. 6(2–3), 145–373 (2013)

    Article  MATH  Google Scholar 

  2. Ballerstein, M.: Convex relaxations for mixed-integer nonlinear programs. Dissertation, Eidgenössische Technische Hochschule ETH Zürich, Nr. 21024 (2013)

    Google Scholar 

  3. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numerica 22, 1–131 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bie, T.D., Cristianini, N.: Semi-supervised learning using semi-definite programming. In: Chapelle, O., Schölkopf, B., Zien, A. (eds.) Semi-Supervised Learning, pp. 119–135. MIT Press, Cambridge (2006)

    Google Scholar 

  6. Bojanowski, P., Bach, F., Laptev, I., Ponce, J., Schmid, C., Sivic, J.: Finding actors and actions in movies. In: ICCV (2013)

    Google Scholar 

  7. Bonami, P., Kilinç, M., Linderoth, J.: Algorithms and software for convex mixed integer nonlinear programs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, pp. 1–39. Springer, New York (2012)

    Chapter  Google Scholar 

  8. Chambolle, A., Cremers, D., Pock, T.: A convex approach to minimal partitions. SIAM J. Imag. Sci. 5(4), 1113–1158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chapelle, O., Chi, M., Zien, A.: A continuation method for semi-supervised SVMs. In: ICML (2006)

    Google Scholar 

  10. Chapelle, O., Sindhwani, V., Keerthi, S.S.: Branch and bound for semi-supervised support vector machines. In: NIPS (2006)

    Google Scholar 

  11. Chapelle, O., Sindhwani, V., Keerthi, S.S.: Optimization techniques for semi-supervised support vector machines. J. Mach. Learn. Res. 9, 203–233 (2008)

    MATH  Google Scholar 

  12. Chapelle, O., Zien, A.: Semi-supervised classification by low density separation. In: AISTATS (2005)

    Google Scholar 

  13. Chopra, S., Rao, M.R.: The partition problem. Math. Programm. 59(1–3), 87–115 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in general weighted graphs. Theoret. Comput. Sci. 361(2), 172–187 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Finley, T., Joachims, T.: Supervised clustering with support vector machines. In: ICML (2005)

    Google Scholar 

  16. Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering problem. Math. Programm. 45(1), 59–96 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, Y., Schuurmans, D.: Convex relaxations of latent variable training. In: NIPS (2008)

    Google Scholar 

  18. Guo, Y., Schuurmans, D.: Adaptive large margin training for multilabel classification. In: AAAI (2011)

    Google Scholar 

  19. Jach, M., Michaels, D., Weismantel, R.: The convex envelope of (n-1)-convex functions. SIAM J. Optim. 19(3), 1451–1466 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Joachims, T.: Transductive inference for text classification using support vector machines. In: ICML (1999)

    Google Scholar 

  21. Joachims, T.: Transductive learning via spectral graph partitioning. In: ICML (2003)

    Google Scholar 

  22. Joulin, A., Bach, F.: A convex relaxation for weakly supervised classifiers. In: ICML (2012)

    Google Scholar 

  23. Khajavirad, A., Sahinidis, N.V.: Convex envelopes of products of convex and component-wise concave functions. J. Global Optim. 52(3), 391–409 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Khajavirad, A., Sahinidis, N.V.: Convex envelopes generated from finitely many compact convex sets. Math. Programm. 137(1–2), 371–408 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lee, J., Leyffer, S.: Mixed Integer Nonlinear Programming. Springer, Heidelberg (2011)

    Google Scholar 

  26. Li, Y.F., Tsang, I.W., Kwok, J.T., Zhou, Z.H.: Tighter and convex maximum margin clustering. In: AISTATS (2009)

    Google Scholar 

  27. Locatelli, M.: A technique to derive the analytical form of convex envelopes for some bivariate functions. J. Global Optim. 59(2–3), 477–501 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Martí, R., Reinelt, G.: The Linear Ordering Problem: Exact and Heuristic Methods in Combinatorial Optimization. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  29. Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex relaxation approach for computing minimal partitions. In: CVPR (2009)

    Google Scholar 

  30. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the mumford-shah functional. In: ICCV (2009)

    Google Scholar 

  31. Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of continuous multi-label problems. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 792–805. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  32. Sindhwani, V., Keerthi, S.S., Chapelle, O.: Deterministic annealing for semi-supervised kernel machines. In: ICML (2006)

    Google Scholar 

  33. Strekalovskiy, E., Chambolle, A., Cremers, D.: A convex representation for the vectorial mumford-shah functional. In: CVPR (2012)

    Google Scholar 

  34. Tawarmalani, M., Richard, J.P.P., Xiong, C.: Explicit convex and concave envelopes through polyhedral subdivisions. Math. Programm. 138(1–2), 531–577 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Springer, New York (2002)

    Book  MATH  Google Scholar 

  36. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Programm. 99(3), 563–591 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vapnik, V.N., Chervonenkis, A.J.: Theory of pattern recognition: Statistical problems of learning. Nauka, Moscow (1974)

    MATH  Google Scholar 

  38. Xu, L., Neufeld, J., Larson, B., Schuurmans, D.: Maximum margin clustering. In: NIPS (2005)

    Google Scholar 

  39. Xu, L., Schuurmans, D.: Unsupervised and semi-supervised multi-class support vector machines. In: AAAI (2005)

    Google Scholar 

  40. Zhang, K., Tsang, I.W., Kwok, J.T.: Maximum margin clustering made practical. IEEE Trans. Neural Netw. 20(4), 583–596 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjoern Andres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Shcherbatyi, I., Andres, B. (2016). Convexification of Learning from Constraints. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45886-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45885-4

  • Online ISBN: 978-3-319-45886-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics