Skip to main content

Algorithmic Statistics: Normal Objects and Universal Models

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9691))

Included in the following conference series:

Abstract

In algorithmic statistics quality of a statistical hypothesis (a model) P for a data x is measured by two parameters: Kolmogorov complexity of the hypothesis and the probability P(x). A class of models \(S_{ij}\) that are the best at this point of view, were discovered. However these models are too abstract.

To restrict the class of hypotheses for a data, Vereshchaginintroduced a notion of a strong model for it. An object is called normal if it can be explained by using strong models not worse than without this restriction. In this paper we show that there are “many types” of normal strings. Our second result states that there is a normal object x such that all models \(S_{ij}\) are not strong for x. Our last result states that every best fit strong model for a normal object is again a normal object.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    by \(\log \) we denote \(\log _2\).

  2. 2.

    This theorem was proved in [10, Theorem VIII.4] with accuracy \(O(\max \{\log C(y)\mid y\in A\}+C(p))\) instead of \(O(\log n)\). Applying [10, Theorem VIII.4] to \(A'=\{y\in A\mid l(y)=n\}\) we obtain the theorem in the present form.

References

  1. Gács, P., Tromp, J., Vitányi, P.M.B.: Algorithmic statistics. IEEE Trans. Inform. Theory 47(6), 2443–2463 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Probl. Inf. Trans. 1(1), 1–7 (1965)

    MathSciNet  MATH  Google Scholar 

  3. Kolmogorov, A.N.: The complexity of algorithms, the objective definition of randomness. Usp. Matematicheskich Nauk 29(4(178)), 155 (1974). Summary of the talk presented April 16, at Moscow Mathematical Society

    MathSciNet  Google Scholar 

  4. Li, M., Vitányi, P.: An Introduction to Kolmogorov complexity and its applications, 3rd edn., xxiii+790 p. Springer, New York (2008). (1st edn. 1993; 2nd edn. 1997), ISBN 978-0-387-49820-1

    Google Scholar 

  5. Shen, A.: Game arguments in computability theory and algorithmic information theory. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 655–666. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Shen, A.: Around kolmogorov complexity: basic notions and results. In: Vovk, V., Papadoupoulos, H., Gammerman, A. (eds.) Measures of Complexity: Festschrift for Alexey Chervonenkis. Springer, Heidelberg (2015)

    Google Scholar 

  7. Shen, A.: The concept of \((\alpha, \beta )\)-stochasticity in the Kolmogorov sense, and its properties. Sov. Math. Dokl. 271(1), 295–299 (1983)

    MATH  Google Scholar 

  8. Shen, A., Uspensky, V., Vereshchagin, N.: Kolmogorov complexity and algorithmic randomness. MCCME (2013) (Russian). English translation: http://www.lirmm.fr/~ashen/kolmbook-eng.pdf

  9. Vereshchagin, N.: Algorithmic minimal sufficient statistics: A new approach. Theory Comput. Syst. 56(2), 291–436 (2015)

    Article  MathSciNet  Google Scholar 

  10. Vereshchagin, N., Vitányi, P.: Kolmogorov’s structure functions with an application to the foundations of model selection. IEEE Trans. Inf. Theory 50(12), 3265–3290 (2004). Preliminary version: Proceedings of the 47th IEEE Symposium on Foundations of Computer Science, pp. 751–760 (2002)

    Article  MATH  Google Scholar 

  11. Vitányi, P., Vereshchagin, N.: On algorithmic rate-distortion function. In: Proceedings of 2006 IEEE International Symposium on Information Theory, Seattle, Washington, 9–14 July 2006

    Google Scholar 

Download references

Acknowledgments

The author is grateful to professor N. K. Vereshchagin for statements of questions, remarks and useful discussions.

This work is supported by RFBR grant 16-01-00362 and partially supported by RaCAF ANR-15-CE40-0016-01 grant. The study has been funded by the Russian Academic Excellence Project ‘5-100’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Milovanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Milovanov, A. (2016). Algorithmic Statistics: Normal Objects and Universal Models. In: Kulikov, A., Woeginger, G. (eds) Computer Science – Theory and Applications. CSR 2016. Lecture Notes in Computer Science(), vol 9691. Springer, Cham. https://doi.org/10.1007/978-3-319-34171-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34171-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34170-5

  • Online ISBN: 978-3-319-34171-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics