Skip to main content

Applications of Bio-molecular Databases in Bioinformatics

  • Chapter
  • First Online:
Medical Imaging in Clinical Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 651))

Abstract

Discovery of genome as well as protein sequencing aroused interest in bioinformatics and propelled the necessity to create databases of biological sequences. These data are processed in useful knowledge/information by data mining before storing into databases. This book chapter aims to present a detailed overview of different types of database called as primary, secondary and composite databases along with many specialized biological databases for RNA molecules, protein-protein interaction, genome information, metabolic pathways, phylogenetic information etc. Attempt has also been made to focus on drawbacks of present biological databases. Moreover, this book chapter provides an elaborate and illustrative discussion about various bioinformatics tools used for gene prediction, sequence analysis, phylogenetic analysis, protein structure as well as function prediction, molecular interactions prediction for several purposes including discovery of new gene as well as conserved regions in protein families, estimation of evolutionary relationships among organisms, 3D structure prediction of drug targets for exploring the mechanism as well as new drug discovery and protein-protein interactions for exploring the signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hogeweg, P.: The roots of bioinformatics in theoretical biology. PLoS Comput. Biol. 7, e1002021 (2011)

    Article  Google Scholar 

  2. Neufeld, L., Cornog, M.: Database history: from dinosaurs to compact discs. J Am. Soc. Inf. Sci. 37, 183–190 (1999)

    Article  Google Scholar 

  3. Chen, M.-S., Han, J., Yu, P.S.: Data mining: an overview from a database perspective. IEEE Trans. Knowl. Data Eng. 8(6), 866–883 (1996)

    Article  Google Scholar 

  4. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., et al. (eds.): Advance in Knowledge Discovery and Data Mining. AAAI/MIT Press, Menlo Park, Cambridge (1996)

    Google Scholar 

  5. Ouzounis, C.A., Valencia, A.: Early bioinformatics: the birth of a discipline-a personal view. Bioinformatics 19, 2176–2190 (2003)

    Article  Google Scholar 

  6. Hassanie, A.E.: Classification and feature selection of breast cancer data based on decision tree algorithm. Stud. Inform. Control 12(1), 33–40

    Google Scholar 

  7. Boeckmann, B., Bairoch, A., Apweiler, R., et al.: The SWISS-PROT protein knowledge base and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003)

    Article  Google Scholar 

  8. UniProt Consortium: The universal protein resource (UniProt). Nucleic Acids Res. 36, D190–D195 (2008)

    Article  Google Scholar 

  9. UniProt Consortium: The universal protein resource (UniProt) in 2010. Nucleic Acids Res. 38, D142–D148 (2010)

    Article  Google Scholar 

  10. UniProt Consortium: Activities at the universal protein resource (UniProt). Nucleic Acids Res. 42, D191–D198 (2014)

    Article  Google Scholar 

  11. Wu, C.H., Yeh, L.S., Huang, H., et al.: The protein information resource. Nucleic Acids Res. 31(1), 345–347 (2003)

    Article  Google Scholar 

  12. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., et al.: GenBank. Nucleic Acids Res. 36, D25–D30 (2008)

    Article  Google Scholar 

  13. Kanz, C., Aldebert, P., Althorpe, N., et al.: The EMBL nucleotide sequence database. Nucleic Acids Res. 33, D29–D33 (2005)

    Article  Google Scholar 

  14. Miyazaki, S., Sugawara, H., Gojobori, T., et al.: DNA data bank of Japan (DDBJ) in xml. Nucleic Acids Res. 31, 13–16 (2003)

    Article  Google Scholar 

  15. Berman, H.M., Westbrook, J., Feng, Z., et al.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  16. Berman, H., Henrick, K., Nakamura, H.: Announcing the worldwide protein data bank. Nat. Struct. Mol. Biol. 10, 980 (2003)

    Article  Google Scholar 

  17. Barker, W.C., Garavelli, J.S., Huang, H., et al.: The protein information resource (PIR). Nucleic Acids Res. 28, 41–44 (2000)

    Article  Google Scholar 

  18. Barker, W.C., Garavelli, J.S., Haft, D.H., et al.: The PIR-international protein sequence database. Nucleic Acids Res. 26(1), 27–32 (1998)

    Article  Google Scholar 

  19. Finn, R.D., Bateman, A., Clements, J., et al.: Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014)

    Article  Google Scholar 

  20. Gonzalez, S., Binato, R., Guida, L., et al.: Conserved transcription factor binding sites suggest an activator basal promoter and a distal inhibitor in the galanin gene promoter in mouse ES cells. Gene 538, 228–234 (2014)

    Article  Google Scholar 

  21. Murzin, A.G., Brenner, S.E., Hubbard, T., et al.: Scop: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995)

    Google Scholar 

  22. Pearl, F., Todd, A., Sillitoe, I., et al.: The CATH domain structure database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Nucleic Acids Res. 33, D247–D251 (2005)

    Article  Google Scholar 

  23. Sigrist, C.J., de Castro, E., Cerutti, L., et al.: New and continuing developments at PROSITE. Nucleic Acids Res. 41, D344–D347 (2013)

    Article  Google Scholar 

  24. Attwood, T.К., Beck, M.E., Flower, D.R., et al.: The PRINTS protein fingerprint database in its fifth year. Nucleic Acids Res. 26(1), 304–308 (1998)

    Article  Google Scholar 

  25. Huang, J.Y., Brutlag, D.L.: The EMOTIF database. Nucleic Acids Res. 29, 202–204 (2001)

    Article  Google Scholar 

  26. Orengo, C.A., Michie, A.D., Jones, S., et al.: CATH—a hierarchic classification of protein domain structures. Structure 5(8), 1093–1108 (1997)

    Article  Google Scholar 

  27. Altschul, S.F., Madden, T.L., Schäffer, A.A., et al.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  Google Scholar 

  28. Gibrat, J.F., Madej, T., Bryant, S.H.: Surprising similarities in structure comparison. Curr. Opin. Struct. Biol. 6, 377–385 (1996)

    Article  Google Scholar 

  29. Benson, D.A., Karsch-Mizrachi, I., Clark, K., et al.: GenBank. Nucleic Acids Res. 40, D48–D53 (2012)

    Article  Google Scholar 

  30. Kinjo, A.R., Suzuki, H., Yamashita, R., et al.: Protein data bank Japan (PDBj): maintaining a structural data archive and resource description framework format. Nucleic Acids Res. 40, D453–D460 (2012)

    Article  Google Scholar 

  31. Burge, S.W., Daub, J., Eberhardt, R., et al.: Rfam 11.0: 10 years of RNA famlies. Nucleic Acids Res. 4, D226–D232 (2013)

    Article  Google Scholar 

  32. Orchard, S., Ammari, M., Aranda, B., et al.: The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42, D358–D363 (2014)

    Article  Google Scholar 

  33. Zanzoni, A., Montecchi-Palazzi, L., Quondam, M., et al.: MINT: a molecular INTeraction database. FEBS Lett. 513, 135–140 (2002)

    Article  Google Scholar 

  34. Joshi-Tope, G., Gillespie, M., Vastrik, I., et al.: Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 33, D428–D432 (2005)

    Article  Google Scholar 

  35. Saier Jr, M.H., Tran, C.V., Barabote, R.D.: TCDB: the transporter classification database for membrane transport protein analyses and information. Nucleic Acids Res. 34, D181–D186 (2006)

    Article  Google Scholar 

  36. Saier Jr, M.H., Reddy, V.S., Tamang, D.G., et al.: The transporter classification database. Nucleic Acids Res. 42, D251–D258 (2014)

    Article  Google Scholar 

  37. Lombard, V., Golaconda, H., Drula, R.E., et al.: The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42(D1), D490–D495 (2014)

    Article  Google Scholar 

  38. Bowes, J.B., Snyder, K.A., Segerdell, E., et al.: Xenbase: gene expression and improved integration. Nucleic Acids Res. 38, D607–D612 (2010)

    Article  Google Scholar 

  39. Cherry, J.M., Hong, E.L., Amundsen, C., et al.: Saccharomyces genome database: the genomics resource of budding yeast. Nucleic Acids Res. 40(D): D700–705 (2012)

    Google Scholar 

  40. St. Pierre, S.E., Ponting, L., Stefancsik, R., et al.: FlyBase 102–advanced approaches to interrogating FlyBase. Nucleic Acids Res. 42: D780–788 (2014)

    Google Scholar 

  41. Caspi, R., Altman, T., Billington, R.: The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 42, D459–D471 (2014)

    Article  Google Scholar 

  42. Thomas, P.D., Campbell, M.J., Kejariwal, A., et al.: PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 13(9), 2129–2141 (2003)

    Article  Google Scholar 

  43. Kanehisa, M.: The KEGG database. Silico Simul. Biological Process. 247, 91–103 (2002)

    Article  Google Scholar 

  44. Morell, V.: TreeBASE: the roots of phylogeny. Science 273, 569 (1996)

    Article  Google Scholar 

  45. Huerta-Cepas, J., Capella-Gutiérrez, S., Pryszcz, L.P., et al.: PhylomeDB v4: zooming into the plurality of evolutionary histories of a genome. Nucleic Acids Res. 42, D897–D902 (2014)

    Article  Google Scholar 

  46. Mitchell, A., Chang, H.-Y., Daugherty, L., et al.: InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 43, D213–D221 (2015)

    Article  Google Scholar 

  47. Martens, L., Hermjakob, H., Jones, P., et al.: PRIDE: the proteomics identifications database. Proteomics 5, 3537–3545 (2005)

    Article  Google Scholar 

  48. Flicek, P., Amode, M.R., Barrell, D., et al.: Ensembl Nucleic Acids Res. 40, D84–D90 (2012)

    Article  Google Scholar 

  49. Gaudet, P., Fey, P., Basu, S., et al.: dictyBase update 2011: web 2.0 functionality and the initial steps towards a genome portal for the Amoebozoa. Nucleic Acids Res. 39, D620–D624 (2011)

    Article  Google Scholar 

  50. Rajoka, M.I., Idrees, S., Khalid, S., et al.: Medherb: an interactive bioinformatics database and analysis resource for medicinally important herbs. Curr. Bioinformatics 9, 23–27 (2014)

    Article  Google Scholar 

  51. Lamesch, P., Berardini, T.Z., Li, D., et al.: The arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 2011, 1–9 (2011)

    Google Scholar 

  52. Muller, H.M., Kenny, E.E., Sternberg, P.W.: Textpresso: an ontology-based information retrieval and extraction system for biological literature. PLoS Biol. 2(11), e309 (2004)

    Article  Google Scholar 

  53. Yang, K., Dinasarapu, A.R., Reis, E.S., et al.: CMAP: complement map database. Bioinformatics 29(14), 1832–1833 (2013)

    Article  Google Scholar 

  54. Wishart, D.S., Tzur, D., Knox, C., et al.: HMDB: the human metabolome database. Nucleic Acids Res. 35, D521–D526 (2007)

    Article  Google Scholar 

  55. Schaefer, C.F., Anthony, K., Krupa, S., et al.: PID: the pathway interaction database. Nucleic Acids Res. 37, D674–D679 (2009)

    Article  Google Scholar 

  56. Dinasarapu, A.R., Saunders, B., Ozerlat, I., et al.: Signaling gateway molecule pages–a data model perspective. Bioinformatics 27(12), 1736–1738 (2011)

    Article  Google Scholar 

  57. Philippi, S., Köhler, J.: Addressing the problems with life-science databases for traditional uses and systems biology. Nat. Rev. Genet. 7(6), 482–488 (2000)

    Article  Google Scholar 

  58. Lewis, S., Ashburner, M., Reese, M.G.: Annotating eukaryote genomes. Curr. Opin. Struct. Biol. 10, 349–354 (2000)

    Article  Google Scholar 

  59. Birney, E., Durbin, R.: Using GeneWise in the Drosophila annotation experiment. Genome Res. 10, 547–548 (2000)

    Article  Google Scholar 

  60. Yeh, R.-F., Lim, L.P., Burge, C.B.: Computational inference of homologous gene structures in the human genome. Genome Res. 11, 803–816 (2001)

    Article  Google Scholar 

  61. Snyder, E.E., Stormo, G.D.: Identification of protein coding regions in genomic DNA. J. Mol. Biol. 248, 1–18 (1995)

    Article  Google Scholar 

  62. Uberbacher, E.C., Mural, R.J.: Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc. Natl. Acad. Sci. USA 88, 11261–11265 (1991)

    Article  Google Scholar 

  63. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997)

    Article  Google Scholar 

  64. Kulp, D., Haussler, D., Reese, M.G., et al.: A generalized hidden Markov model for the recognition of human genes in DNA. In: Proceedings of the International Conference on Intelligent Systems for Molecular Biology, vol. 4, pp. 134–142 (1996)

    Google Scholar 

  65. Krogh, A.: Two methods for improving performance of an HMM and their application for gene-finding. In: Proceedings of the International Conference on Intelligent Systems for Molecular Biology (ISMB‘97), vol. 5, pp. 179–186 (1997)

    Google Scholar 

  66. Parra, G., Blanco, E., Guig´o, R.: GeneID in Drosophila. Genome Res. 10, 391–393 (2000)

    Article  Google Scholar 

  67. Salamov, A.A., Solovyev, V.V.: Ab initio gene finding in Drosophila genomic DNA. Genome Res. 10, 516–522 (2000)

    Article  Google Scholar 

  68. Lencz, T., Guha, S., Liu, C., Rosenfeld, J., et al.: Genome-wide association study implicates NDST3 in schizophrenia and bipolar disorder. Nat. Commun. 4, 2739 (2013)

    Article  Google Scholar 

  69. Peng, Z., Lu, Y., Li, L., et al.: The draft genome of the fastgrowing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat. Genet. 45, 456–461 (2013)

    Article  Google Scholar 

  70. Geer, R.C., Sayers, E.W.: Entrez: making use of its power. Brief Bioinform. 4, 179–184 (2003)

    Article  Google Scholar 

  71. Parmigiani, G., Garrett, E.S., Irizarry, R.A., et al.: The analysis of gene expression data: an overview of methods and software. Springer, New York (2003)

    Book  MATH  Google Scholar 

  72. Hoersch, S., Leroy, C., Brown, N.P., et al.: The GeneQuiz web server: protein functional analysis through the web. Trends Biochem. Sci. 25, 33–35 (2000)

    Article  Google Scholar 

  73. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

    Article  Google Scholar 

  74. Waterhouse, A.M., Procter, J.B., Martin, D.M.A., et al.: Jalview version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009)

    Article  Google Scholar 

  75. Thomas, P., Starlinger, J., Vowinkel, A., Arzt, S., Leser, U.: GeneView: a comprehensive semantic search engine for PubMed. Nucleic Acids Res. 40, W585–W591 (2012)

    Article  Google Scholar 

  76. Page, R.D.M.: TREEVIEW: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357–358 (1996)

    Google Scholar 

  77. Zhang, Y., Phillips, C.A., Rogers, G.L., et al.: On finding bicliques in bipartite graphs: a novel algorithm and its application to the integration of diverse biological data types. BMC Bioinformatics 15, 110 (2014)

    Article  Google Scholar 

  78. Sievers, F., Wilm, A., Dineen, D.G., et al.: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011)

    Article  Google Scholar 

  79. Finn, R.D., Clements, J., Eddy, S.R.: HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011)

    Article  Google Scholar 

  80. Allen, J.E., Salzberg, S.L.: JIGSAW: integration of multiple sources of evidence for gene prediction. Bioinformatics 21(18), 3596–3603 (2005)

    Article  Google Scholar 

  81. Weckx, S., Del-Favero, J., Rademakers, R.: novoSNP, a novel computational tool for sequence variation discovery. Genome Res. 15(3), 436–442 (2005)

    Article  Google Scholar 

  82. Gasteiger, E., Hoogland, C., Gattiker, A., et al.: Protein identification and analysis tools on the expasy server. In: Walker, J.M. (ed.) The Proteomics Protocols Handbook. Humana Press, p 571–607 (2005)

    Google Scholar 

  83. Kanchan, S., Mehrotra, R., Chowdhury, S.: Evolutionary pattern of four representative DNA repair proteins across six model organisms: an in silico analysis. Netw. Model Anal. Health Inf. Bioinform 3, 70 (2014)

    Article  Google Scholar 

  84. Kanchan, S., Mehrotra, R., Chowdhury, S.: In Silico analysis of the Endonuclease III protein family identifies key residues and processes during evolution. J. Mol. Evol. 81(1–2), 54–67 (2015)

    Article  Google Scholar 

  85. Khan, F.A., Phillips, C.D., Baker, R.J.: Timeframes of speciation, reticulation, and hybridization in the bulldog bat explained through phylogenetic analyses of all genetic transmission elements. Syst. Biol. 63, 96–110 (2014)

    Article  Google Scholar 

  86. Price, M.N., Dehal, P.S., Arkin, A.P.: FastTree 2–approximately maximum likelihood trees for large alignments. PLoS ONE 5, e9490 (2010)

    Article  Google Scholar 

  87. Kumar, S., Tamura, K., Nei, M.: MEGA: molecular evolutionary genetics analysis software for microcomputers. Comput. Appl. Biosci. 10, 189–191 (1994)

    Google Scholar 

  88. Huang, T., He, Z.S., Cui, W.R., et al.: A sequence-based approach for predicting protein disordered regions. Protein Pept. Lett. 20, 243–248 (2013)

    Google Scholar 

  89. Liwo, A., Lee, J., Ripoll, D.R., et al.: Protein structure predictionby global optimization of a potential energy function. Proc. Natl. Acad. Sci. USA 96(10), 5482–5485 (1999)

    Article  Google Scholar 

  90. Bowie, J., Luthy, R., Eisenberg, D.: A method to identify protein sequences that fold into a known three-dimensional structure. Science 253(5016), 164–170 (1991)

    Article  Google Scholar 

  91. Šali, A., Blundell, T.L.: Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234(3), 779–815 (1993)

    Article  Google Scholar 

  92. Kesheri, M., Kanchan, S., Chowdhury, S., et al.: Secondary and tertiary structure prediction of proteins: a bioinformatic approach. In: Zhu, Q., Azar, A.T. (eds.) Complex System Modelling and Control Through Intelligent Soft Computations, pp. 541–569. Springer International Publishing, Switzerland (2015)

    Google Scholar 

  93. Kesheri, M., Kanchan, S., Richa, et al.: Isolation and in silico analysis of Fe-superoxide dismutase in the cyanobacterium Nostoc commune. Gene. 553(2): 117–125 (2014)

    Google Scholar 

  94. Källberg, M., Wang, H., Wang, S., et al.: Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 7, 1511–1522 (2012)

    Article  Google Scholar 

  95. Cuff, J.A., Clamp, M.E., Siddiqui, A.S., et al.: JPred: a consensus secondary structure prediction server. Bioinformatics 14, 892–893 (1998)

    Article  Google Scholar 

  96. Bystroff, C., Thorsson, V., Baker, D.: HMMSTR: a hidden Markov model for local sequence-structure correlations in proteins. J. Mol. Biol. 301, 173–190 (2000)

    Article  Google Scholar 

  97. Raghava, G.: APSSP2: a combination method for protein secondary structure prediction based on neural network and example based learning. CASP5 A-132 (2002)

    Google Scholar 

  98. Eswar, N., Eramian, D., Webb, B., et al.: Protein structure modeling with MODELLER. Methods Mol. Biol. 426, 145–159 (2008)

    Article  Google Scholar 

  99. Kelley, L.A., Sternberg, M.J.: Protein structure prediction on the web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009)

    Article  Google Scholar 

  100. Wang, L., Huang, C., Yang, M.Q., et al.: BindN + for accurate prediction of DNA and RNA-binding residues from protein sequence features. BMC Syst. Biol. 4(1), S3 (2010)

    Article  Google Scholar 

  101. Vinayagam, A., Zirin, J., Roesel, C., et al.: Integrating protein-protein interaction networks with phenotypes reveals signs of interactions. Nat. Methods 11, 94–99 (2014)

    Article  Google Scholar 

  102. Schultz, J., Copley, R.R., Doerks, T., et al.: SMART: A Web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28, 231–234 (2000)

    Article  Google Scholar 

  103. Morris, G.M., Huey, R., Lindstrom, W., et al.: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009)

    Article  Google Scholar 

  104. De Vries, S.J., van Dijk, M., Bonvin, A.M.: The HADDOCK web server for data driven biomolecular docking. Nat. Protoc. 5, 883–897 (2010)

    Article  Google Scholar 

  105. Franceschini, A., Szklarczyk, D., Frankild, S., et al.: STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815 (2013)

    Article  Google Scholar 

  106. Flannick, J., Novak, A., Srinivasan, B.S., et al.: Graemlin: general and robust alignment of multiple large interaction networks. Genome Res. 16, 1169–1181 (2006)

    Article  Google Scholar 

  107. Kelley, B.P., Yuan, B., Lewitter, F., et al.: PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids Res. 32, W83–W88 (2004)

    Article  Google Scholar 

  108. Adamcsek, B., Palla, G., Farkas, I.J., et al.: CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22, 1021–1023 (2006)

    Article  Google Scholar 

  109. Fathy, M.E., Hussein, A.S., Tolba, M.F.: Fundamental matrix estimation: a study of error criteria. Pattern Recogn. Lett. 32(2), 383–391 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minu Kesheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumari, A., Kanchan, S., Sinha, R.P., Kesheri, M. (2016). Applications of Bio-molecular Databases in Bioinformatics. In: Dey, N., Bhateja, V., Hassanien, A. (eds) Medical Imaging in Clinical Applications. Studies in Computational Intelligence, vol 651. Springer, Cham. https://doi.org/10.1007/978-3-319-33793-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33793-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33791-3

  • Online ISBN: 978-3-319-33793-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics