Skip to main content

Numerical Modelling of Hydrogen Assisted Cracking in Steel Welds

  • Chapter
  • First Online:
Cracking Phenomena in Welds IV

Abstract

Hydrogen assisted stress corrosion and cold cracking represent still a major topic regarding the safety of welded steel components against failure in many industrial branches. Hydrogen might be introduced during fabrication welding or might be taken up from an environment during sour service or at cathodic protection. Additionally, understanding and avoidance of hydrogen entry into weld microstructures from gaseous pressurized environments becomes increasingly important for renewable energy components. There are two types of metallurgical mechanisms associated with hydrogen assisted cracking, i.e. the cracking as well as hydrogen transport and trapping mechanisms. For numerical modelling, it has to be considered that both types are not independent of each other, that the mechanisms are not yet completely clarified and that validation of such models strongly depends on implementation of the correct hydrogen related materials properties. However, quite significant achievements have been made in modelling of hydrogen assisted cracking by indirect coupling of thermal, stress-strain as well as hydrogen uptake and diffusion analyses. After a brief introduction into the subject and by revisiting various proposed cracking mechanisms, the present contribution focuses on recent developments of a numerical model based on a comparison of actual hydrogen concentrations and mechanical loads with respective hydrogen dependent material properties as crack initiation and propagation criteria. The basic procedure for numerical simulation of crack initiation and propagation is outlined and it is shown how such numerical simulations can be validated experimentally. Furthermore, it is highlighted how such a procedure has been extended to a comprehensive model for life time prediction of welded steel pipeline components and experimentally verified. Finally, it is outlined how the model can be extended to simulate cracking in heterogeneous steel microstructures on the different scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Th. Boellinghaus: Modelling of Hydrogen Diffusion and Cracking in Steel Welds. In: Mathematical Modelling of Weld Phenomena 5, H. Cerjak (Eds.), Seggau, Austria, Maney Publishing, 1999, pp. 1019–1060

    Google Scholar 

  2. Th. Boellinghaus; H. Hoffmeister: Numerical Model for Hydrogen-Assisted Cracking. Corrosion Science, Vol. 56 (2000), No. 6, pp. 611–622

    Google Scholar 

  3. H.G. Nelson: Hydrogen Embrittlement. In: Treatise on Materials Science and Technology: Embrittlement of Engineering Alloys, Volume 25, C.L. Briant, S.K. Banerji (Eds.), Academic Press Inc, 1983, pp. 275–359

    Google Scholar 

  4. Th. Boellinghaus: Hydrogen Assisted Cracking of Supermartensitic Stainless Steels. In: International Conference on Hydrogen Effects on Materials Behavior and Corrosion Deformation Interaction, N.R. Moody, A.W. Thompson., R.E. Ricker, G.W. Was, R.H. Jones (Eds.), Jackson Lake Lodge, Moran, Wyoming, TMS-The Minerals, Metals and Materials Society, 2003, pp. 1009–1018

    Google Scholar 

  5. E. Wendler-Kalsch: Grundlagen und Mechanismen der Wasserstoff-induzierten Korrosion metallischer Werkstoffe. In: Wasserstoff und Korrosion, D. Kuron (Eds.), Bonn, Verlag Irene Kuron, 2000, pp. 7–53

    Google Scholar 

  6. J.P. Hirth: Effects of hydrogen on the properties of iron and steel. Metallurgical Transactions A, Vol. 11 (1980), No. 6, pp. 861–890

    Google Scholar 

  7. W. Gerberich: Modeling hydrogen induced damage mechanisms in metals. In: Gaseous hydrogen embrittlement of materials in energy technologies - Mechanisms, modelling and future developments, R.P. Gangloff, B.P. Somerday (Eds.), Woodhead Publishing Ltd, 2012, pp. 209–246

    Google Scholar 

  8. C.A. Zapffe; C.E. Sims: Hydrogen Embrittlement, Internal Stress and Defects in Steel. Transactions of the AIME, Vol. 145 (1941), pp. 225–259

    Google Scholar 

  9. N.J. Petch; P. Stables: Delayed Fracture of Metals under Static Load. Nature, Vol. 169 (1952), No. 4307, pp. 842–843

    Google Scholar 

  10. R.A. Oriani: Hydrogen Embrittlement of Steels. Annual Review of Materials Science, Vol. 8 (1978), No. 1, pp. 327–357

    Google Scholar 

  11. I.M. Robertson; P. Sofronis; A. Nagao; M.L. Martin; S. Wang; D.W. Gross; K.E. Nygren: Hydrogen Embrittlement Understood. Metallurgical and Materials Transactions B, Vol. 46 (2015), No. June, pp. 1085–1103

    Google Scholar 

  12. D. Kuron: Einfluß des Wasserstoffs auf Titan, Zirconium, Niob und Tantal. In: Wasserstoff und Korrosion, D. Kuron (Eds.), Bonn, Verlag Irene Kuron, 2000, pp. 212–256

    Google Scholar 

  13. U. Zwicker: Wasserstoffversprödung von Titan und Titanlegierungen. Materialwissenschaft und Werkstofftechnik, Vol. 5 (1974), No. 5, pp. 233–241

    Google Scholar 

  14. D. Eliezer; Th. Boellinghaus: Hydrogen effects in titanium alloys. In: Gaseous hydrogen embrittlement of materials in energy technologies - The problem, its charackterisation and effects on particular alloy classes, R.P. Gangloff, B.P. Somerday (Eds.), Woodhead Publishing Ltd, 2012, pp. 668–706

    Google Scholar 

  15. A. Troiano: The Role Of Hydrogen and other Intersticials in the mechanical Behavior of Metals. Transactions of ASM, Vol. 52 (1960), pp. 54–80

    Google Scholar 

  16. R.A. Oriani: A Mechanistic Theory of Hydrogen Embrittlement of Steels. Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 76 (1972), No. 8, pp. 848–857

    Google Scholar 

  17. H.K. Birnbaum; I.M. Robertson; P. Sofronis; D. Teter: Mechanisms of Hydrogen Related Fracture - A Review. In: Corrosion-Deformation Interactions, M. Thierry (Eds.), Nice, France, Maney Publishing, 1996, pp. 172–193

    Google Scholar 

  18. G.E. Dieter: Elements of the Theory of Plasticity. In: Mechanical Metallurgy, New York, McGraw Hill Higher Education, 1988, pp. 69–102

    Google Scholar 

  19. J. Tien; A.W. Thompson; I.M. Bernstein; R.J. Richards: Hydrogen transport by dislocations. Metallurgical Transactions A, Vol. 7 (1976), No. 6, pp. 821–829

    Google Scholar 

  20. C.D. Beachem: A new model for hydrogen-assisted cracking (hydrogen “embrittlement”). Metallurgical Transactions B, Vol. 3 (1972), No. 2, pp. 441–455

    Google Scholar 

  21. E. Viyanit: Numerical Simulation of Hydrogen Assisted Cracking in Supermartensitic Stainless Steel Welds. Dissertation, Helmut-Schmidt-Universität Hamburg, 2005, 229 pages

    Google Scholar 

  22. H. Birnbaum; P. Sofronis: Hydrogen-Enhanced Localized Plasticity-A Mechanism for Hydrogen-Related Fracture. Materials Science and Engineering: A, Vol. 176 (1994), No. 1–2, pp. 191–202

    Google Scholar 

  23. P. Sofronis; H.K. Birnbaum: Mechanics of the hydrogen dislocation impurity interactions—I. Increasing shear modulus. Journal of the Mechanics and Physics of Solids, Vol. 43 (1995), No. 1, pp. 49–90

    Google Scholar 

  24. P. Sofronis; R. McMeeking: Numerical analysis of hydrogen transport near a blunting crack tip. Journal of the Mechanics and Physics of Solids, Vol. 37 (1989), No. 3, pp. 317–350

    Google Scholar 

  25. P. Sofronis: The influence of mobility of dissolved hydrogen on the elastic response of a metal. Journal of the Mechanics and Physics of Solids, Vol. 43 (1995), No. 9, pp. 1385–1407

    Google Scholar 

  26. S.P. Lynch: Progress Towards Understanding Mechanisms Of Hydrogen Embrittlement And Stress Corrosion Cracking. In: Corrosion - Conference and Expo, Nashville, Tennessee, NACE International, 2007, pp. 1694–1748

    Google Scholar 

  27. S. Lynch: Hydrogen embrittlement phenomena and mechanisms. Corrosion Reviews, Vol. 30 (2012), No. 3–4, pp. 105–123

    Google Scholar 

  28. P. Novak; R. Yuan; B.P. Somerday; P. Sofronis; R.O. Ritchie: A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel. Journal of the Mechanics and Physics of Solids, Vol. 58 (2010), No. 2, pp. 206–226

    Google Scholar 

  29. A. Barnoush; H. Vehoff: In situ electrochemical nanoindentation: A technique for local examination of hydrogen embrittlement. Corrosion Science, Vol. 50 (2008), No. 1, pp. 259–267

    Google Scholar 

  30. S. Wang; M.L. Martin; P. Sofronis; S. Ohnuki; N. Hashimoto; I.M. Robertson: Hydrogen-induced intergranular failure of iron. Acta Materialia, Vol. 69 (2014), pp. 275–282

    Google Scholar 

  31. A. Turnbull: Modelling of environment assisted cracking. Corrosion Science, Vol. 34 (1993), No. 6, pp. 921–960

    Google Scholar 

  32. M. Dadfarnia; P. Sofronis; B.P. Somerday; D.K. Balch; P. Schembri; R. Melcher: On the environmental similitude for fracture in the SENT specimen and a cracked hydrogen gas pipeline. Engineering Fracture Mechanics, Vol. 78 (2011), No. 12, pp. 2429–2438

    Google Scholar 

  33. J. Lufrano; P. Sofronis; D. Symons: Hydrogen transport and large strain elastoplasticity near a notch in alloy X-750. Engineering Fracture Mechanics, Vol. 59 (1998), No. 6, pp. 827–845

    Google Scholar 

  34. J.C. Sobotka; R.H. Dodds Jr.; P. Sofronis: Effects of hydrogen on steady, ductile crack growth: Computational studies. International Journal of Solids and Structures, Vol. 46 (2009), No. 22–23, pp. 4095–4106

    Google Scholar 

  35. Y. Liang; D. Ahn; P. Sofronis; R. Doddsjr; D. Bammann: Effect of hydrogen trapping on void growth and coalescence in metals and alloys. Mechanics of Materials, Vol. 40 (2008), No. 3, pp. 115–132

    Google Scholar 

  36. D.C. Ahn; P. Sofronis; R. Dodds: Modeling of hydrogen-assisted ductile crack propagation in metals and alloys. International Journal of Fracture, Vol. 145 (2007), No. 2, pp. 135–157

    Google Scholar 

  37. B.P. Somerday; M. Dadfarnia; D.K. Balch; K. a. Nibur; C.H. Cadden; P. Sofronis: Hydrogen-Assisted Crack Propagation in Austenitic Stainless Steel Fusion Welds. Metallurgical and Materials Transactions A, Vol. 40 (2009), No. 10, pp. 2350–2362

    Google Scholar 

  38. D. Delafosse; T. Magnin: Hydrogen induced plasticity in stress corrosion cracking of engineering systems. Engineering Fracture Mechanics, Vol. 68 (2001), No. 6, pp. 693–729

    Google Scholar 

  39. N.R. Raykar; S.K. Maiti; R.K. Singh Raman; S. Aryan: Study of hydrogen concentration dependent growth of external annular crack in round tensile specimen using cohesive zone model. Engineering Fracture Mechanics, Vol. 106 (2013), pp. 49–66

    Google Scholar 

  40. A.H.M. Krom; R.W.J. Koers; A. Bakker: Hydrogen transport near a blunting crack tip. Journal of the Mechanics and Physics of Solids, Vol. 47 (1999), No. 4, pp. 971–992

    Google Scholar 

  41. O. Takakuwa; M. Nishikawa; H. Soyama: Numerical simulation of the effects of residual stress on the concentration of hydrogen around a crack tip. Surface and Coatings Technology, Vol. 206 (2012), No. 11–12, pp. 2892–2898

    Google Scholar 

  42. W. Brocks; R. Falkenberg; I. Scheider: Coupling aspects in the simulation of hydrogen-induced stress-corrosion cracking. Procedia IUTAM, Vol. 3 (2012), pp. 11–24

    Google Scholar 

  43. A. T. Yokobori: The mechanism of hydrogen embrittlement: the stress interaction between a crack, a hydrogen cluster, and moving dislocations. International Journal of Fracture, Vol. 128 (2004), No. 1, pp. 121–131

    Google Scholar 

  44. C.V. Di Leo; L. Anand: Hydrogen in metals : A coupled theory for species diffusion and large elastic – plastic deformations. International Journal of Plasticity, Vol. 43 (2013), pp. 42–69

    Google Scholar 

  45. R. Oriani: The diffusion and trapping of hydrogen in steel. Acta Metallurgica, Vol. 18 (1970), No. 1, pp. 147–157

    Google Scholar 

  46. Y. Liang; P. Sofronis: Micromechanics and numerical modelling of the hydrogen–particle–matrix interactions in nickel-base alloys. Modelling and Simulation in Materials Science and Engineering, Vol. 11 (2003), No. 4, pp. 523–551

    Google Scholar 

  47. A. Turnbull; D.H. Ferriss; H. Anzaib: Modelling of the hydrogen distribution at a crack tip. Vol. 206 (1996), pp. 1–13

    Google Scholar 

  48. A. Krom; H. Maier; R. Koers; A. Bakker: The effect of strain rate on hydrogen distribution in round tensile specimens. Materials Science and Engineering A, Vol. 271 (1999), No. 1–2, pp. 22–30

    Google Scholar 

  49. S. Serebrinsky; E.A. Carter; M. Ortiz: A quantum-mechanically informed continuum model of hydrogen embrittlement. Journal of the Mechanics and Physics of Solids, Vol. 52 (2004), No. 10, pp. 2403–2430

    Google Scholar 

  50. T. Siegmund; W. Brocks: A numerical study on the correlation between the work of separation and the dissipation rate in ductile fracture. Engineering Fracture Mechanics, Vol. 67 (2000), No. 2, pp. 139–154

    Google Scholar 

  51. A. Turnbull: Hydrogen diffusion and trapping in metals. In: Gaseous hydrogen embrittlement of materials in energy technologies - Mechanisms, modelling and future developments classes, R.. P. Gangloff, B.P. Somerday (Eds.), Woodhead Publishing Ltd, 2012, pp. 89–128

    Google Scholar 

  52. I.M. Robertson; M.L. Martin; J.A. Fenske: Influence of hydrogen on the behavior of dislocations. In: Gaseous hydrogen embrittlement of materials in energy technologies - Mechanisms, modelling and future developments classes, R.P. Gangloff, B.P. Somerday (Eds.), Woodhead Publishing Ltd, 2012, pp. 166–206

    Google Scholar 

  53. D. Delafosse: Hydrogen effects on the plasticity of face centred cubic (fcc) crystals. In: Gaseous hydrogen embrittlement of materials in energy technologies - Mechanisms, modelling and future developments, R.P. Gangloff, B.P. Somerday (Eds.), Woodhead Publishing Ltd, 2012, pp. 247–285

    Google Scholar 

  54. M.R. Begley; J.A. Begley; C.M. Landis: Continuum mechanics modeling of hydrogen embrittlement. In: Gaseous hydrogen embrittlement of materials in energy technologies - Mechanisms, modelling and future developments, R. Gangloff, B. Somerday (Eds.), Woodhead Publishing Ltd, 2012, pp. 286–325

    Google Scholar 

  55. M. Dadfarnia; P. Sofronis; B.P. Somerday; D.K. Balch; P. Schembri: Degradation models for Hydrogen embrittlement. In: Gaseous hydrogen embrittlement of materials in energy technologies - Mechanisms, modelling and future developments, R.P. Gangloff, B.P. Somerday (Eds.), Woodhead Publishing Ltd, 2012, pp. 326–377

    Google Scholar 

  56. M.M. Hall Jr: Effect of inelastic strain on hydrogen-assisted fracture of metals. In: Gaseous hydrogen embrittlement of materials in energy technologies - Mechanisms, modelling and future developments, R.P. Gangloff, B.B. Somerday (Eds.), Woodhead Publishing Ltd, 2012, pp. 378–429

    Google Scholar 

  57. X. Yu; F. Gou; B. Li; N. Zhang: Numerical study of the effect of hydrogen on the crack propagation behavior of single crystal tungsten. Fusion Engineering and Design, Vol. 89 (2014), No. 7–8, pp. 1096–1100

    Google Scholar 

  58. D. Connétable; Y. Wang; D. Tanguy: Segregation of hydrogen to defects in nickel using first-principles calculations: The case of self-interstitials and cavities. Journal of Alloys and Compounds, Vol. 614 (2014), pp. 211–220

    Google Scholar 

  59. R. Matsumoto; S. Seki; S. Taketomi; N. Miyazaki: Hydrogen-related phenomena due to decreases in lattice defect energies—Molecular dynamics simulations using the embedded atom method potential with pseudo-hydrogen effects. Computational Materials Science, Vol. 92 (2014), pp. 362–371

    Google Scholar 

  60. G.S. Was; D. Farkas; I.M. Robertson: Micromechanics of dislocation channeling in intergranular stress corrosion crack nucleation. Current Opinion in Solid State and Materials Science, Vol. 16 (2012), No. 3, pp. 134–142

    Google Scholar 

  61. M. Itakura; H. Kaburaki; M. Yamaguchi; T. Okita: The effect of hydrogen atoms on the screw dislocation mobility in bcc iron: A first-principles study. Acta Materialia, Vol. 61 (2013), No. 18, pp. 6857–6867

    Google Scholar 

  62. J. Song; W. a. Curtin: Mechanisms of hydrogen-enhanced localized plasticity: An atomistic study using α-Fe as a model system. Acta Materialia, Vol. 68 (2014), pp. 61–69

    Google Scholar 

  63. S. Jothi; T.N. Croft; S.G.R. Brown; E. a. de Souza Neto: Finite element microstructural homogenization techniques and intergranular, intragranular microstructural effects on effective diffusion coefficient of heterogeneous polycrystalline composite media. Composite Structures, Vol. 108 (2014), pp. 555–564

    Google Scholar 

  64. V. Olden; A. Saai; L. Jemblie; R. Johnsen: FE simulation of hydrogen diffusion in duplex stainless steel. International Journal of Hydrogen Energy, Vol. 39 (2014), No. 2, pp. 1156–1163

    Google Scholar 

  65. R.W. Smith: Computer simulation of intergranular stress corrosion cracking via hydrogen embrittlement. Modelling and Simulation in Materials Science and Engineering, Vol. 8 (2000), No. 4, pp. 629–648

    Google Scholar 

  66. A. Traidia; M. Alfano; G. Lubineau; S. Duval: An effective finite element model for the prediction of hydrogen induced cracking in steel pipelines. International Journal of Hydrogen Energy, Vol. 37 (2012), No. 21, pp. 16214–16230

    Google Scholar 

  67. L.O. Jernkvist; a. R. Massih: Multi-field modelling of hydride forming metals. Part I: Model formulation and validation. Computational Materials Science, Vol. 85 (2014), pp. 363–382

    Google Scholar 

  68. L.O. Jernkvist: Multi-field modelling of hydride forming metals Part II: Application to fracture. Computational Materials Science, Vol. 85 (2014), pp. 383–401

    Google Scholar 

  69. a. G. Varias; J.L. Feng: Simulation of hydride-induced steady-state crack growth in metals ? Part I: growth near hydrogen chemical equilibrium. Computational Mechanics, Vol. 34 (2004), No. 5, pp. 339–356

    Google Scholar 

  70. T. Shoji; Z. Lu; H. Murakami: Formulating stress corrosion cracking growth rates by combination of crack tip mechanics and crack tip oxidation kinetics. Corrosion Science, Vol. 52 (2010), No. 3, pp. 769–779

    Google Scholar 

  71. J. Shi; J. Wang; D.D. Macdonald: Prediction of crack growth rate in Type 304 stainless steel using artificial neural networks and the coupled environment fracture model. Corrosion Science, Vol. 89 (2014), pp. 69–80

    Google Scholar 

  72. B.-H. Choi; A. Chudnovsky: Observation and Modeling of Stress Corrosion Cracking in High Pressure Gas Pipe Steel. Metallurgical and Materials Transactions A, Vol. 42 (2010), No. 2, pp. 383–395

    Google Scholar 

  73. H. Hoffmeister; O. Klein: Modeling of SCC initiation and propagation mechanisms in BWR environments. Nuclear Engineering and Design, Vol. 241 (2011), No. 12, pp. 4893–4902

    Google Scholar 

  74. H. Hoffmeister; Th. Böllinghaus: Modeling the Effects of Dissolved Hydrogen, Temperature, pH, and Global Stress on Stress Corrosion Cracking of a Cr-Ni Model Alloy in High-Temperature Water. Corrosion, Vol. 71 (2015), No. 5, pp. 559–573

    Google Scholar 

  75. H. Hoffmeister; Th. Böllinghaus: Modeling of Combined Anodic Dissolution/Hydrogen-Assisted Stress Corrosion Cracking of Low-Alloyed Power Plant Steels in High-Temperature Water Environments. Corrosion, Vol. 70 (2014), No. 6, pp. 563–578

    Google Scholar 

  76. H. Hoffmeister: Modeling the Effects of Local Anodic Acidification on Stress Corrosion Cracking of Nickel. Corrosion, Vol. 67 (2011), No. 7, pp. 075002–1–075002–12

    Google Scholar 

  77. H. Hoffmeister; J. Neuß: Assessment and Crack Tip Ductility by Tensile Slow Strain Rate Crack Start Measurements of High Alloyed Materials. In: Stainless Steel World 2011 - Conference & Exhibition, Maastricht, Niederlande, 2011, pp. paper 11051

    Google Scholar 

  78. H. Hoffmeister: Modeling of Crevice Corrosion of Pure Nickel by Coupling of Phase and Polarization Behavior at Various pH, Chloride, and Oxygen Levels. Corrosion, Vol. 61 (2005), No. 9, pp. 880–888

    Google Scholar 

  79. H. Hoffmeister: Modeling the effects of nuclear environments on crevice corrosion of pure nickel by coupling of phase and polarization behavior. Nuclear Engineering and Design, Vol. 239 (2009), No. 10, pp. 1795–1803

    Google Scholar 

  80. H. Hoffmeister: Modeling the Effect of Chloride Content on Hydrogen Sulfide Corrosion of Pure Iron by Coupling of Phase and Polarization Behavior. Corrosion, Vol. 64 (2008), No. 6, pp. 483–495

    Google Scholar 

  81. L. Mishnaevsky: Numerical Experiments in the Mesomechanics of Materials. Habilitationsschrift, Technische Universität Darmstadt, 2005, 150 pages

    Google Scholar 

  82. L.L. Mishnaevsky; S. Schmauder: Continuum Mesomechanical Finite Element Modeling in Materials Development: A State-of-the-Art Review. Applied Mechanics Reviews, Vol. 54 (2001), No. 1, pp. 49

    Google Scholar 

  83. N.N.: Guidelines on Materials Requirements for Carbon and Low Alloy Steels for H2S-Containing Environments in Oil and Gas Production. Maney Publishing, 2009, 56 pages, ISBN: 978–1-90654-033-3

    Google Scholar 

  84. Th. Boellinghaus; H. Hoffmeister: Finite element calculations of pre- and postheating procedures for sufficient hydrogen removal in butt joints. In: Mathematical Modelling of weld Phenomena 3, H. Cerjak (Eds.), Seggau, Austria, The Institute of Materials, London, 1997, pp. 726–756

    Google Scholar 

  85. Th. Boellinghaus; E. Viyanit; H. Hoffmeister: Numerical modelling of hydrogen assisted cracking. In: Corrosion 2001, Houston, TX, USA, NACE National Association of Corrosion Engineers, 2001, pp. Paper 01226

    Google Scholar 

  86. N.N.: Corrosion Resistant Alloys for Oil and Gas Production: Guidance on General Requirements and Test Methods for H2S Service. Maney Publishing, 2002, 96 pages, ISBN: 978-1-902653-55-6

    Google Scholar 

  87. Th. Boellinghaus; H. Hoffmeister; J. Klemme; H. Alzer: Hydrogen permeation in a low carbon martensitic stainless steel exposed to H2S containing brines at free corrosion. In: Corrosion, NACE International, 1999, pp. Paper 609

    Google Scholar 

  88. D.P.G. Lidbury: The Estimation of Crack Tip Strain Rate Parameters Characterizing Environment Assisted Crack Growth Data. In: International Conference on Environment Assisted Cracking by the Localized Crack Environment, R.P. Gangloff (Eds.), New York, ASME, 1983, pp. 149–172

    Google Scholar 

  89. Th. Boellinghaus; H. Hoffmeister; S. Dietrich: Slow Strain Rate Testing of Low Carbon Martensitic Stainless Steels. In: Advances in Corrosion Control and Materials in Oil and Gas Production, P.S. Jackman, L.M. Smith (Eds.), The Institute of Materials, London, 1999, pp. 274–285

    Google Scholar 

  90. Th. Boellinghaus; H. Hoffmeister; M. Littich: On-line Sulfide Stress Cracking Monitoring of 13 % Cr Pipe Welds at Realistic Weld Restraint Conditions in the Instrumented Restraint Cracking (IRC) Test. In: Advances in Corrosion Control and Materials in Oil and Gas Production, P.S. Jackman, L.M. Smith (Eds.), The Institute of Materials, London, 1999, pp. 286–303

    Google Scholar 

  91. H. Takabe; H. Amaya; H. Hirata, M. Ueda: Corrosion Resistance of Weldable Modified 13Cr Stainless Steel for CO2 Applications. In: Advances in Corrosion Control and Materials in Oil and Gas Production, P. S. Jackman, L. M. Smith (Eds.), EFC Publications No. 26, IOM London, UK, pp. 219–230

    Google Scholar 

  92. J. J. Dufrane; E. Franceschetti; J. Heather, H. van der Winden: Weldable 13 % Chromium Steel: the Development of the Components for a Wet Gas Piping System. In: Advances in Corrosion Control and Materials in Oil and Gas Production, P. S. Jackman, L. M. Smith (Eds.), EFC Publications No. 26, IOM London, UK, pp. 249–258

    Google Scholar 

  93. H. Heuser; C. Jochum; E. Pertender; J. Toesch: Girth Welding of Supermartensitic Stainless Steels with Matching Filler Wires. In: IIW-Doc. IX-H-515-01 / IX-2005-01\, 2001

    Google Scholar 

  94. Th. Boellinghaus; E. Viyanit: Numerical Simulation of Hydrogen Addisted Cracking in Girth Welds of SMSS Pipelines - Report I. In: Mathematical Modelling of Weld Phenomena 6, H. Cerjak (Ed.), Seggau, Austria, Maney Publishing, 2002, pp. 839–855

    Google Scholar 

  95. Th. Boellinghaus; E. Viyanit; H. Hoffmeister: Numerical Simulations of Hydrogen-Assisted Cracking in Girth Welds of Supermartensitic Stainless Steel Pipelines - Report II. In: Mathematical Modelling of Weld Phenomena 7, H. Cerjak, H.K.D.H. Bhadeshia, E. Kozeschnik (Eds.), Seggau, Austria, Verlag der Technischen Universitat Graz, 2005, pp. 847–874

    Google Scholar 

  96. M. Ueda; H. Amaya; H. Hirata; K. Kondo; Y. Muarata; Y. Komizo: Corrosion Resistance of 13 % Chromium Steel Welded Joints in Flow Line Applications. In: Advances in Corrosion Control and Materials in Oil and Gas Production, P. S. Jackman, L. M. Smith (Eds.), EFC Publications No. 26, IOM London, UK, pp. 267–273

    Google Scholar 

  97. Th. Boellinghaus; H. Hoffmeister; I. Stiebe-Springer; W. Florian; T. Michael: Component Testing of Welded Supermartensitic Stainless Steel Pipes. In: International Conference EuroCorr 2000, London, European Federation of Corrosion, 2000

    Google Scholar 

  98. Th. Boellinghaus; H. Hoffmeister; K. Feuerstake; H. Alzer; J. Krewinkel: Finite element calculation of hydrogen uptake and diffusion in martensitic stainless steel welds. In: Mathematical Modelling of Weld Phenomena 4, H.H. Cerjak (Eds.), Seggau, Österreich, The Institute of Materials, 1998, pp. 355–378

    Google Scholar 

  99. Th. Boellinghaus; H. Hoffmeister; C. Middel: Scatterbands for hydrogen diffusion coefficients in steel having a ferritic or martensitic microstructure and steels having an austenitic microstructure at room temperature. Welding in the World, Vol. 37 (1996), No. 1, pp. 16–23

    Google Scholar 

  100. Th. Boellinghaus; T. Kannengiesser; C. Jochum; I. Stiebe-Springer: Effect of Filler Material Selection on Stress-Strain Distribution and Hydrogen Cracking in Welded Supermartensitic Stainless Steel Pipes. In: Corrosion - Conference and Expo, Denver, Colorado, NACE International, 2002, pp. 20

    Google Scholar 

  101. Th. Bollinghaus; H. Hoffmeister; L. Reuter: Material properties of as delivered and quenched modified martensitic stainless steels dependent on hydrogen concentration. In: Proceedings of the 1st International Conference Supermartensitic Stainless Steels, Brüssel, Belgian Welding Institute, 1999, pp. 264–271

    Google Scholar 

  102. Th. Boellinghaus; H. Hoffmeister; T. Tanski: Wet H2S Performance of As Delivered and Quenched Modified Martensitic Staunless Steel Determined by SSRT. In: Corrosion, 1999, pp. Paper 99588

    Google Scholar 

  103. F. Richter: Die wichtigsten physikalischen Eigenschaften von 52 Eisenwerkstoffen. Stahleisen - Sonderberichte, (1973), No. 8, pp. 1–30

    Google Scholar 

  104. P. Wongpanya; Th. Boellinghaus; G. Lothongkum; T. Kannengiesser: Effects of preheating and interpass temperature on stresses in S1100QL multi-pass butt-welds. IIW-Doc. IX-2240-07, (2007), pp. 1–26

    Google Scholar 

  105. P. Wongpanya; T. Boellinghaus; G. Lothongkum: Effects of hydrogen removal heat treatment on residual stresses in high strength structural steel welds. Welding in the World, Vol. 50 (2006), No. Special Issue, pp. 96–103

    Google Scholar 

  106. F. Richter: Physikalische Eigenschaften von Stählen und ihre Temperaturabhängigkeit. 1983, 42 Seiten

    Google Scholar 

  107. P. Wongpanya; Th. Boellinghaus; G. Lothongkum: Numerical Simulation of Hydrogen Removal Heat Treatment Procedures in High Strength Steel Welds. In: Mathematical Modelling of Weld Phenomena 8, H. Cerjak (Eds.), Seggau, Austria, Verlag der Technischen Universität Graz, 2007, pp. 743–765

    Google Scholar 

  108. P. Wongpanya; Th. Boellinghaus; G. Lothongkum; H. Hoffmeister: Numerical Modelling of Cold Crack Initiation and Propagation in S 1100 QL Steel Root Welds. Welding in the World, Vol. 53 (2009), No. 3/4, pp. R34–R43

    Google Scholar 

  109. Th. Boellinghaus; P. Wongpanya: Modeling of Hydrogen Assisted Cold Cracking in High Strength Steel Welds. In: Proceedings of the 2008 International Hydrogen Conference, B. Somerday, P. Sofronis, R. Jones (Eds.), Jackson Lake Lodge, Wyoming, USA, ASM International, 2009, pp. 588–595

    Google Scholar 

  110. T. Boellinghaus; H. Hoffmeister; A. Dangeleit: A scatterband for hydrogen diffusion coefficients in micro-alloyed and low carbon structural steels. Welding in the World, Vol. 35 (1995), No. 2, pp. 83–96

    Google Scholar 

  111. D.M. Seeger: Wasserstoffaufnahme und -diffusion in Schweißnahtgefügen hochfester Stähle. Dissertation, Helmut-Schmidt-University – University of the Federal Armed Forces Hamburg, 2004, 144 pages

    Google Scholar 

  112. D. Brinkmann: Beitrag zur experimentellen und numerischen Verformungsanalyse von Schweißverbindungen. Dissertation, Technische Universität Braunschweig, 2000, 168 pages

    Google Scholar 

  113. H. Hoffmeister: Concept and procedure of the IRC test for assessing hydrogen assisted weld cracking. Steel Research, Vol. 57 (1986), No. 7, pp. 344–347

    Google Scholar 

  114. Th. Boellinghaus; H. Hoffmeister; M. Littich: Application of the IRC-Test for Assessment of Reaction Stresses in Tabular Joints with Respect to Hydrogen Assisted Weld Cracking. Welding in the World, Vol. 43 (1999), No. 2, pp. 27–35

    Google Scholar 

  115. T. Mente; Th. Boellinghaus; M. Schmitz-Niederau: Heat treatment Effects on the Reduction of Hydrogen in Multi-Layer High-Strength Weld Joints. Welding in the World, Vol. 56 (2013), No. 7-8, pp. 26–36

    Google Scholar 

  116. T.S. Taylor; T. Pendlington; R. Bird: Foinaven Super Duplex Materials Cracking Investigation. In: Offshore Technology Conference, Houston, Texas, Society of Petroleum Engineers, 1999, pp. 467–480

    Google Scholar 

  117. E. Steppan; T. Mente; Th. Böllinghaus: Numerical investigations on cold cracking avoidance in fillet welds of high-strength steels. Welding in the World, Vol. 57 (2013), No. 3, pp. 359–371

    Google Scholar 

  118. T. Mente; Th. Boellinghaus: Numerical investigations on hydrogen assisted cracking in duplex stainless steel microstructures. In: C. Cross, Th. Boellinghaus, J. Lippold (Eds.): 4th International Workshop Cracking Phenomena in Welds, Berlin, Springer, accepted for publication, 2015

    Google Scholar 

  119. S. Huizinga; B. Mclaughlin; I.M. Hannah; S.J. Paterson; B.N.W. Snedden: Failure of a Subsea Super Duplex Manifold Hub by HISC and Implications for Design. In: Corrosion, San Diego, California, USA, NACE International, 2006, pp. 9

    Google Scholar 

  120. T. Mente; Th. Boellinghaus: Mesoscale modeling of hydrogen-assisted cracking in duplex stainless steels. Welding in the World, Vol. 58 (2013), No. 2, pp. 205–216

    Google Scholar 

  121. T. Mente; Th. Boellinghaus: Modeling Of Hydrogen Distributionin A Duplex Stainless Steel. Welding in the World, Vol. 56 (2013), No. 11-12, pp. 66–78

    Google Scholar 

  122. T. Mente; Th. Boellinghaus: Numerical Model for Hydrogen Assisted Cracking in Duplex Stainless Steel Microstructures. In: Mathematical Modelling of Weld Phenomena 10, C. Sommitsch, N. Enzinger (Eds.), Seggau, Austria, Verlag der Technischen Universitat Graz, 2012, pp. 337–356

    Google Scholar 

  123. M. Knyazeva; M. Pohl: Duplex Steels: Part I: Genesis, Formation, Structure. Metallography, Microstructure, and Analysis, Vol. 2 (2013), No. 2, pp. 113–121

    Google Scholar 

  124. J. Nilsson; G. Chai: The physical metallurgy of duplex stainless steels. In: International Conference & Expo Duplex 2007, Gardo, Italien, Associazione Italiana di Metallurgia, 2007, pp. 73–82

    Google Scholar 

  125. N. Tsuchida; T. Kawahata; E. Ishimaru; A. Takahashi; H. Suzuki; T. Shobu: Static Tensile Deformation Behavior of a Lean Duplex Stainless Steel Studied by In Situ Neutron Diffraction and Synchrotron Radiation White X-rays. ISIJ International, Vol. 53 (2013), No. 7, pp. 1260–1267

    Google Scholar 

  126. R. Dakhlaoui; A. Baczmański; C. Braham; S. Wroński; K. Wierzbanowski; E.C. Oliver: Effect of residual stresses on individual phase mechanical properties of austeno-ferritic duplex stainless steel. Acta Materialia, Vol. 54 (2006), No. 19, pp. 5027–5039

    Google Scholar 

  127. R. Dakhlaoui; C. Braham; A. Baczmanski: Mechanical properties of phases in austeno-ferritic duplex stainless steel—Surface stresses studied by X-ray diffraction. Materials Science and Engineering: A, Vol. 444 (2007), No. 1–2, pp. 6–17

    Google Scholar 

  128. J. Johansson; M. Odén; X.-H. Zeng: Evolution of the residual stress state in a duplex stainless steel during loading. Acta Materialia, Vol. 47 (1999), No. 9, pp. 2669–2684

    Google Scholar 

  129. J.J. Moverare; M. Odén: Influence of elastic and plastic anisotropy on the flow behavior in a duplex stainless steel. Metallurgical and Materials Transactions A, Vol. 33 (2002), No. 1, pp. 57–71

    Google Scholar 

  130. E. Owczarek; T. Zakroczymski: Hydrogen transport in a duplex stainless steel. Acta Materialia, Vol. 48 (2000), No. 12, pp. 3059–3070

    Google Scholar 

  131. A. Turnbull; R.B. Hutchings: Analysis of hydrogen atom transport in a two-phase alloy. Materials Science and Engineering: A, Vol. 177 (1994), No. 1–2, pp. 161–171

    Google Scholar 

  132. C. San Marchi; B.P. Somerday; J. Zelinski; X. Tang; G.H. Schiroky: Mechanical Properties of Super Duplex Stainless Steel 2507 after Gas Phase Thermal Precharging with Hydrogen. Metallurgical and Materials Transactions A, Vol. 38 (2007), No. 11, pp. 2763–2775

    Google Scholar 

  133. J. Michalska; M. Sozańska; M. Hetmańczyk: Application of quantitative fractography in the assessment of hydrogen damage of duplex stainless steel. Materials Characterization, Vol. 60 (2009), No. 10, pp. 1100–1106

    Google Scholar 

  134. World Materials Research Institute Forum (WMRIF): 10 Major trends in Materials Science and Engineering, https://www.wmrif.info

  135. Materials Genom Initiative, https://www.whitehouse.gov/mgi

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Th. Boellinghaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boellinghaus, T., Mente, T., Wongpanya, P., Viyanit, E., Steppan, E. (2016). Numerical Modelling of Hydrogen Assisted Cracking in Steel Welds. In: Boellinghaus, T., Lippold, J., Cross, C. (eds) Cracking Phenomena in Welds IV. Springer, Cham. https://doi.org/10.1007/978-3-319-28434-7_18

Download citation

Publish with us

Policies and ethics