Skip to main content

Numerical Investigations on Hydrogen-Assisted Cracking in Duplex Stainless Steel Microstructures

  • Chapter
  • First Online:
Cracking Phenomena in Welds IV

Abstract

Duplex stainless steels (DSS) are used in various industrial applications, e.g. in offshore constructions as well as in chemical industry. DSS reach higher strength than commercial austenitic stainless steels at still acceptable ductility. Additionally, they exhibit an improved corrosion resistance against pitting corrosion and corrosion cracking in harsh environments. Nevertheless, at specific conditions, as for instance arc welding, cathodic protection or exposure to sour service environments, such materials can take up hydrogen which may cause significant property degradation particularly in terms of ductility losses which, in turn, may entail hydrogen-assisted cracking (HAC). The cracking mechanism in DSS is different from steels having only a single phase, because hydrogen diffusion, stress-strain distribution and crack propagation are different in the austenite or ferrite phase. Therefore, the mechanism of HAC initiation and propagation as well as hydrogen trapping in DSS have not been fully clarified up to the present, as for most of the two-phase microstructures. At this point the numerical simulation can bridge the gap to a better insight in the cracking mechanism regarding the stress-strain distribution as well as hydrogen distribution between the phases, both austenite and ferrite, of the DSS. For that purpose, a two dimensional numerical mesoscale model was created representing the microstructure of the duplex stainless steel 1.4462, consisting of approximately equal portions of austenite and ferrite. Hydrogen assisted cracking was simulated considering stresses and strains as well as hydrogen concentration in both phases. Regarding the mechanical properties of austenite and ferrite different statements can be found in the literature, dependent on chemical composition and thermal treatment. Thus, various stress-strain curves were applied for austenite and ferrite simulating the HAC process in the DSS microstructure. By using the element elimination technique crack critical areas can be identified in both phases of the DSS regarding the local hydrogen concentration and the local mechanical load. The results clearly show different cracking behavior with varying mechanical properties of austenite and ferrite. Comparison of the results of the numerical simulation to those of experimental investigations on DSS will improve understanding of the HAC process in two phase microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Liljas: 80 years with duplex steels, a historic review and prospects for the future. In: 6th European Stainless Steel Conference, Helsinki, 2008, pp. 535–540

    Google Scholar 

  2. I. Alvarez-Armas: Duplex Stainless Steels: Brief History and Some Recent Alloys. Recent Patents on Mechanical Engineering, Vol. 1 (2008), No. 1, pp. 51–57

    Google Scholar 

  3. T.S. Taylor; T. Pendlington; R. Bird: Foinaven Super Duplex Materials Cracking Investigation. In: Offshore Technology Conference, Houston, Texas, Society of Petroleum Engineers, 1999, pp. 467–480

    Google Scholar 

  4. V. Olden; C. Thaulow; R. Johnsen: Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels. Materials & Design, Vol. 29 (2008), No. 10, pp. 1934–1948

    Google Scholar 

  5. W. Brocks; R. Falkenberg; I. Scheider: Coupling aspects in the simulation of hydrogen-induced stress-corrosion cracking. Procedia IUTAM, Vol. 3 (2012),, pp. 11–24

    Google Scholar 

  6. P. Wongpanya; T. Böllinghaus; G. Lothongkum; H. Hoffmeister: Numerical Modelling of Cold Crack Initiation and Propagation in S 1100 QL Steel Root Welds. Welding in the World, Vol. 53 (2009), No. 3/4, pp. R34–R43

    Google Scholar 

  7. E. Viyanit: Numerical Simulation of Hydrogen Assisted Cracking in Supermartensitic Stainless Steel Welds. 2005, p. 229

    Google Scholar 

  8. T. Boellinghaus; H. Hoffmeister: Numerical Model for Hydrogen-Assisted Cracking. Corrosion Science, Vol. 56 (2000), No. 6, pp. 611–622

    Google Scholar 

  9. M. Knyazeva; M. Pohl: Duplex Steels: Part I: Genesis, Formation, Structure. Metallography, Microstructure, and Analysis, Vol. 2 (2013), No. 2, pp. 113–121

    Google Scholar 

  10. J. Nilsson; G. Chai: The physical metallurgy of duplex stainless steels. In: International Conference & Expo Duplex 2007, Gardo, Italien, Associazione Italiana di Metallurgia, 2007, pp. 73–82

    Google Scholar 

  11. N. Tsuchida; T. Kawahata; E. Ishimaru; A. Takahashi; H. Suzuki; T. Shobu: Static Tensile Deformation Behavior of a Lean Duplex Stainless Steel Studied by In Situ Neutron Diffraction and Synchrotron Radiation White X-rays. ISIJ International, Vol. 53 (2013), No. 7, pp. 1260–1267

    Google Scholar 

  12. R. Dakhlaoui; A. Baczmański; C. Braham; S. Wroński; K. Wierzbanowski; E.C. Oliver: Effect of residual stresses on individual phase mechanical properties of austeno-ferritic duplex stainless steel. Acta Materialia, Vol. 54 (2006), No. 19, pp. 5027–5039

    Google Scholar 

  13. R. Dakhlaoui; C. Braham; A. Baczmanski: Mechanical properties of phases in austeno-ferritic duplex stainless steel—Surface stresses studied by X-ray diffraction. Materials Science and Engineering: A, Vol. 444 (2007), No. 1-2, pp. 6–17

    Google Scholar 

  14. J. Johansson; M. Odén; X.-H. Zeng: Evolution of the residual stress state in a duplex stainless steel during loading. Acta Materialia, Vol. 47 (1999), No. 9, pp. 2669–2684

    Google Scholar 

  15. J.J. Moverare; M. Odén: Influence of elastic and plastic anisotropy on the flow behavior in a duplex stainless steel. Metallurgical and Materials Transactions A, Vol. 33 (2002), No. 1, pp. 57–71

    Google Scholar 

  16. E. Owczarek; T. Zakroczymski: Hydrogen transport in a duplex stainless steel. Acta Materialia, Vol. 48 (2000), No. 12, pp. 3059–3070

    Google Scholar 

  17. A. Turnbull; R.B. Hutchings: Analysis of hydrogen atom transport in a two-phase alloy. Materials Science and Engineering: A, Vol. 177 (1994), No. 1-2, pp. 161–171

    Google Scholar 

  18. C. San Marchi; B.P. Somerday; J. Zelinski; X. Tang; G.H. Schiroky: Mechanical Properties of Super Duplex Stainless Steel 2507 after Gas Phase Thermal Precharging with Hydrogen. Metallurgical and Materials Transactions A, Vol. 38 (2007), No. 11, pp. 2763–2775

    Google Scholar 

  19. T. Michler; J. Naumann: Microstructural aspects upon hydrogen environment embrittlement of various bcc steels. International Journal of Hydrogen Energy, Vol. 35 (2010), No. 2, pp. 821–832

    Google Scholar 

  20. K.H. Lo; C.H. Shek; J.K.L. Lai: Recent developments in stainless steels. Materials Science and Engineering: R: Reports, Vol. 65 (2009), No. 4-6, pp. 39–104

    Google Scholar 

  21. S.-L. Chou; W.-T. Tsai: Hydrogen embrittlement of duplex stainless steel in concentrated sodium chloride solution. Materials Chemistry and Physics, Vol. 60 (1999), No. 2, pp. 137–142

    Google Scholar 

  22. A.M. Elhoud; N.C. Renton; W.F. Deans: Hydrogen embrittlement of super duplex stainless steel in acid solution. International Journal of Hydrogen Energy, Vol. 35 (2010), No. 12, pp. 6455–6464

    Google Scholar 

  23. W.B. Hutchinson; K. Ushioda; G. Runnsjö: Anisotropy of tensile behaviour in a duplex stainless steel sheet. Materials Science and Technology, Vol. 1 (1985), No. 9, pp. 728–736

    Google Scholar 

  24. A. Sharrfeddin; S.M. Musa; F.M. Elshawesh: Role of structural orientation on the susceptibility of 2205 duplex stainless steel to hydrogen embrittlement. In: 2nd International Advances in Applied Physics and Materials Science Congress, M.H. Aslan, A.Y. Oral (Ed.), Antalya, Turkey, American Institute of Physics, 2012, pp. 199–203

    Google Scholar 

  25. W. Zheng; D. Hardie: Effect of Structural Orientation on the Susceptibility of Commercial Duplex Stainless Steels to Hydrogen Embrittlement. Corrosion, Vol. 47 (1991), No. 10, pp. 792–799

    Google Scholar 

  26. T. Böllinghaus; H. Hoffmeister: FINITE ELEMENTE CALCULATIONS OF PRE- AND POST-HEATING PROCEDURES FOR SUFFICIENT HYDROGEN REMOVAL IN BUTT JOINTS. In: Mathematical Modelling of Weld Phenomena 3, H. Cerjak (Ed.), Maney Materials Science, 1997, pp. 727–756

    Google Scholar 

  27. S. Floreen; H.W. Hayden: The Influence of Austenite and Ferrite on the Mechanical Properties of Two-Phase Stainless Steels Having Microduplex Structures. Transactions of ASM, Vol. 61 (1968),, pp. 489–499

    Google Scholar 

  28. I. Tamura; Y. Tomoto; A. Akao; Y. Yamaoka; M. Ozawa; S. Kanatani: On the Strength and Ductility of Two-phase Iron Alloys. Transactions of the Iron and Steel Institute of Japan, Vol. 13 (1973),, pp. 283–292

    Google Scholar 

  29. W. Ramberg; W.R. Osgood: Description of Stress–Strain Curves by three Parameters. Washington, Technical Note No. 902, NASA Scientific and Technical Information Facility, 1943, p. 32

    Google Scholar 

  30. K.J.R. Rasmussen: Full-range stress–strain curves for stainless steel alloys. Journal of Constructional Steel Research, Vol. 59 (2003), No. 1, pp. 47–61

    Google Scholar 

  31. G.E. Dieter: Elements of the Theory of Plasticity. In: Mechanical Metallurgy, New York, McGraw Hill Higher Education, 1988, pp. 69–102

    Google Scholar 

  32. D.U. Weber: Modellierung von Verformung und Schädigung in Werkstoffgefügen mit unterschiedlich großen Teilchen und unter Wasserstoffeinfluss Vorwort. (2006), No. April

    Google Scholar 

  33. a. El Bartali; P. Evrard; V. Aubin; S. Herenú; I. Alvarez-Armas; a. F. Armas; S. Degallaix-Moreuil: Strain heterogeneities between phases in a duplex stainless steel. Comparison between measures and simulation. Procedia Engineering, Vol. 2 (2010), No. 1, pp. 2229–2237

    Google Scholar 

  34. P. Zimmer; D.M. Seeger; T. Böllinghaus: Hydrogen Permeation and Related Material Properties of High Strength Structural Steels. In: High Strength Steel for Hydropower Plants, H.H. Cerjak, N. Enzinger (Ed.), Graz, Verlag der Technischen Universität Graz, 2005, pp. 17–1 ff

    Google Scholar 

  35. P. Zimmer: Zur Bewertung der Kaltrisssicherheit von Schweißverbindungen aus hochfesten Feinkornbaustählen. 2007, p. 169

    Google Scholar 

  36. T. Bollinghaus; H. Hoffmeister; L. Reuter: Material properties of as delivered and quenched modified martensitic stainless steels dependent on hydrogen concentration. In: Proceedings of the 1st International Conference Supermartensitic Stainless Steels, Brüssel, Belgian Welding Institute, 1999, pp. 264–271

    Google Scholar 

  37. T. Zakroczymski; a. Glowacka; W. Swiatnicki: Effect of hydrogen concentration on the embrittlement of a duplex stainless steel. Corrosion Science, Vol. 47 (2005), No. 6, pp. 1403–1414

    Google Scholar 

  38. A.A. El-yazgi; D. Hardie: The embrittlement of a duplex stainless steel by hydrogen in a variety of environments. Corrosion Science, Vol. 38 (1996), No. 5, pp. 735–744

    Google Scholar 

  39. C. San Marchi; T. Michler; K. a. Nibur; B.P. Somerday: On the physical differences between tensile testing of type 304 and 316 austenitic stainless steels with internal hydrogen and in external hydrogen. International Journal of Hydrogen Energy, Vol. 35 (2010), No. 18, pp. 9736–9745

    Google Scholar 

  40. T. Matsuo; J. Yamabe; S. Matsuoka; Y. Murakami: Influence of Hydrogen and Prestrain on Tensile Properties of Type 316 l Austenitic Stainless Steel. In: Proceedings of the 2008 International Hydrogen, Effects of Hydrogen on Materials, B. Somerday, P. Sofronis, R. Jones (Ed.), ASM International, 2009, pp. 105–112

    Google Scholar 

  41. C.S. Marchia; B.P. Somerdaya; X. Tangb; G.H. Schiroky: Effects of alloy composition and strain hardening on tensile fracture of hydrogen-precharged type 316 stainless steels. International Journal of Hydrogen Energy, Vol. 33 (2008), No. 2, pp. 889–904

    Google Scholar 

  42. C. Skipper; G. Leisk; A. Saigal; D. Matson; C.S. Marchi: Effect of Internal Hydrogen on Fatigue Strength of Type 316 Stainless Steel. In: Proceedings of the 2008 International Hydrogen Conference, Effects of Hydrogen on Materials, B. Somerday, P. Sofronis, R. Jones (Ed.), ASM International, 2009, pp. 139–146

    Google Scholar 

  43. C.M. Younes; a. M. Steele; J. a. Nicholson; C.J. Barnett: Influence of hydrogen content on the tensile properties and fracture of austenitic stainless steel welds. International Journal of Hydrogen Energy, Vol. 38 (2013), No. 11, pp. 4864–4876

    Google Scholar 

  44. M.R. Louthan; G.R. Caskey; J.A. Donovan; D.E. Rawl: Hydrogen embrittlement of metals. Materials Science and Engineering, Vol. 10 (1972),, pp. 357–368

    Google Scholar 

  45. D. Yang; K. Chasse; P.M. Singh: Stress and Environmental Factors Affecting Stress Corrosion Cracking of Duplex Stainless Steels in White Liquor Environments. In: TAPPI Engineering, Pulping, Environmental Conference, Memphis, Tennessee, 2009, p. 19

    Google Scholar 

  46. S.S. Chen; T.I. Wu; J.K. Wu: Effects of deformation on hydrogen degradation in a duplex stainless steel. Journal of Materials Science, Vol. 39 (2004), No. 1, pp. 67–71

    Google Scholar 

  47. W.C. Luu; P.W. Liu; J.K. Wu: Hydrogen transport and degradation of a commercial duplex stainless steel. Corrosion Science, Vol. 44 (2002), No. 8, pp. 1783–1791

    Google Scholar 

  48. F. Straub; T. Böllinghaus; W. Unger; T. Mente: In-situ detection of Deuterium in duplex stainless steels by time-of-flight secondary ion mass spectrometry (TOF-SIMS). In: Hydrogen-materials interactions - Proceedings of the International Hydrogen Conference (IHC 2012), P. Sofronis, B.P. Somerday (Ed.), Moran, Wyoming, USA, ASME, 2014, pp. 505–512

    Google Scholar 

  49. T. Böllinghaus; H. Hoffmeister; C. Middel: Scatterbands for hydrogen diffusion coefficients in steel having a ferritic or martensitic microstructure and steels having an austenitic microstructure at room temperature. Welding in the World, Vol. 37 (1996), No. 1, pp. 16–23

    Google Scholar 

  50. T. Böllinghaus; H. Hoffmeister; A. Dangeleit: A scatterband for hydrogen diffusion coefficients in micro-alloyed and low carbon structural steels. Welding in the World, Vol. 35 (1995), No. 2, pp. 83–96

    Google Scholar 

  51. J. Tien; A.W. Thompson; I.M. Bernstein; R.J. Richards: Hydrogen transport by dislocations. Metallurgical Transactions A, Vol. 7 (1976), No. 6, pp. 821–829

    Google Scholar 

  52. J.A. Donovan: Accelerated evolution of hydrogen from metals during plastic deformation. Metallurgical Transactions A, Vol. 7 (1976), No. 11, pp. 1677–1683

    Google Scholar 

  53. T.-P. Perng; C.J. Altstetter: Cracking kinetics of two-phase stainless steel alloys in hydrogen gas. Metallurgical Transactions A, Vol. 19 (1988), No. 1, pp. 145–152

    Google Scholar 

  54. E. Dabah; V. Lisitsyn; D. Eliezer: Performance of hydrogen trapping and phase transformation in hydrogenated duplex stainless steels. Materials Science and Engineering: A, Vol. 527 (2010), No. 18-19, pp. 4851–4857

    Google Scholar 

  55. M. Dadfarnia; P. Novak; D.C. Ahn; J.B. Liu; P. Sofronis; D.D. Johnson; I.M. Robertson: Recent advances in the study of structural materials compatibility with hydrogen. Advanced materials (Deerfield Beach, Fla.), Vol. 22 (2010), No. 10, pp. 1128–35

    Google Scholar 

  56. B. Gołebiowski; W.A. Swiatnicki; M. Gaspérini: Microstructural changes induced near crack tip during corrosion fatigue tests in austenitic-ferritic steel. Journal of microscopy, Vol. 237 (2010), No. 3, pp. 352–8

    Google Scholar 

  57. A. Głowacka; M.J. Woźniak; G. Nolze; W.A. Świątnicki: Hydrogen induced phase transformations in austenitic-ferritic steel. Solid State Phenomena, Vol. 112 (2006), pp. 133–140

    Google Scholar 

  58. A. Barnoush; M. Zamanzade; H. Vehoff: Direct observation of hydrogen-enhanced plasticity in super duplex stainless steel by means of in situ electrochemical methods. Scripta Materialia, Vol. 62 (2010), No. 5, pp. 242–245

    Google Scholar 

  59. H. Fischmeister; B. Karlsson: Plastizitätseigenschaften grob-zweiphasiger Werkstoffe. Zeitschrift für Metallkunde, Vol. 68 (1977), No. 5, pp. 311–327

    Google Scholar 

  60. K. Cho; J. Gurland: The law of mixtures applied to the plastic deformation of two- phase alloys of coarse microstructures. Metallurgical Transactions A, Vol. 19 (1988), No. 8, pp. 2027–2040

    Google Scholar 

  61. X. Sun; K.S. Choi; W.N. Liu; M. a. Khaleel: Predicting failure modes and ductility of dual phase steels using plastic strain localization. International Journal of Plasticity, Vol. 25 (2009), No. 10, pp. 1888–1909

    Google Scholar 

  62. J. Michalska; M. Sozańska; M. Hetmańczyk: Application of quantitative fractography in the assessment of hydrogen damage of duplex stainless steel. Materials Characterization, Vol. 60 (2009), No. 10, pp. 1100–1106

    Google Scholar 

  63. E.M. Westin: Microstructure and properties of welds in the lean duplex stainless steel LDX 2101 ®. 2010, p. 72

    Google Scholar 

  64. I. Varol; J.C. Lippold; W.A. Baeslack: Welding of Duplex Stainless Steels. Key Engineering Materials, Vol. 69-70 (1992),, pp. 217–252

    Google Scholar 

  65. R.A. Walker; T.G. Gooch: Hydrogen cracking of welds in duplex stainless steel. In: International Conference on Duplex Stainless Steel, Les editions de physique, J. Charles (Ed.), Beaun, Frankreich, 1991, pp. 1053–1063

    Google Scholar 

  66. T. Mente; T. Bollinghaus: Modeling Of Hydrogen Distributionin A Duplex Stainless Steel. Welding in the World, Vol. 56 (2013), No. 11-12, pp. 66–78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mente, T., Boellinghaus, T. (2016). Numerical Investigations on Hydrogen-Assisted Cracking in Duplex Stainless Steel Microstructures. In: Boellinghaus, T., Lippold, J., Cross, C. (eds) Cracking Phenomena in Welds IV. Springer, Cham. https://doi.org/10.1007/978-3-319-28434-7_16

Download citation

Publish with us

Policies and ethics