Skip to main content

Fundus Image Based Blood Flow Simulation of the Retinal Arteries

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine

Abstract

Computational fluid dynamic (CFD) simulations can help to understand the hemodynamics of the retinal vascular network and the microcirculation. Systemic diseases, like hypertension and diabetes, change the geometry of the vasculature in the retina and these changes can be seen with fundus photography. Furthermore, these changes are indicators of cardiovascular diseases. The aim of this study is to create a plane 2D model of the retinal arterial network based on a high-resolution fundus photograph and to perform a CFD simulation. The blood vessels were segmented from the image with the Frangi filter method. A structural fractal tree was implemented to calculate the outflow boundary conditions representing the peripheral vascular bed. With the Frangi filter method and the high-resolution fundus image a comprehensive model of the visible retinal artery network could be achieved. The simulation results show realistic velocity and pressure distributions of the retinal blood flow in a healthy retina compared to in-vivo measurements in the literature. This work is an initial step towards creating comprehensive patient-specific models of the retinal vasculature based on readily available fundus photography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ANSYS, Inc, FLUENT 14.5 User Guide (2014)

    Google Scholar 

  2. D.L. Brown, R. Cortez, M.L. Minion, Accurate projection methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 168(2), 464–499 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Budai, J. Odstricilik, R. Kollar, J. Jan, T. Kubena, G. Michelson, A public database for the evaluation of fundus image segmentation algorithms, Poster at Fort Lauderdale Convention Center, The Association of Research in Vision and Ophthalmology (ARVO) Annual Meeting in Fort Lauderdale (2011)

    Google Scholar 

  4. A. Budai, R. Bock, A. Maier, J. Hornegger, G. Michelson, Robust vessel segmentation in fundus images. Int. J. Biomed. Imaging 2013, 1–11 (2013)

    Article  Google Scholar 

  5. Y.I. Cho, K.R. Kensey, Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology 28(3–4), 241–262 (1991)

    Google Scholar 

  6. G. Clough, J.L. Cracowski, Spotlight issue: microcirculation-from a clinical perspective. Microcirculation 19(1), 1–4 (2012)

    Article  Google Scholar 

  7. M. Day, The no-slip condition of fluid dynamics. Erkenntnis 33(3), 285–296 (1990)

    Article  MathSciNet  Google Scholar 

  8. T. Gracner, Ocular blood flow velocity determined by color Doppler imaging in diabetic retinopathy. Ophthalmologica 218(4), 237–242 (2004)

    Article  Google Scholar 

  9. G. Guidoboni, A. Harris, S. Cassani, J. Arciero, B. Siesky, A. Amireskandari, L. Tobe, P. Egan, I. Januleviciene, J. Park, Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance. Invest. Ophthalmol. Vis. Sci. 55(7), 4105–4118 (2014)

    Article  Google Scholar 

  10. L.D. Hubbard, R.J. Brothers, W.N. King, L.X. Clegg, R. Klein, L.S. Cooper, A.R. Sharrett, M.D. Davis, J. Cai, Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study. Ophthalmology 106(12), 2269–2280 (1999)

    Article  Google Scholar 

  11. H. Kolb, E. Fernandez, R. Nelson, Facts and Figures Concerning the Human Retina in Webvision: The Organization of the Retina and Visual System (University of Utah, Salt Lake City, 1995)

    Google Scholar 

  12. C. Kondermann, D. Kondermann, M. Yan, Blood vessel classification into arteries and veins in retinal images, in Conference Proceedings (2007), pp. 651247–651249

    Google Scholar 

  13. G. Liew, M.L. Baker, T.Y. Wong, P.J. Hand, J.J. Wang, P. Mitchell, D.A. De Silva, M.C. Wong, E. Rochtchina, R.I. Lindley, J.M. Wardlaw, G.J. Hankey, Multi-Centre Retinal Stroke Study Group, Differing associations of white matter lesions and lacunar infarction with retinal microvascular signs. Int. J. Stroke 9(7), 921–5 (2014)

    Google Scholar 

  14. D. Liu, N.B. Wood, N. Witt, A.D. Hughes, S.A. Thom, X.Y. Xu, Computational analysis of oxygen transport in the retinal arterial network. Curr. Eye Res. 34(11), 945–956 (2009)

    Article  Google Scholar 

  15. J. Malek, T. Azar, B. Nasralli, M. Tekari, H. Kamoun, R. Tourki, Computational analysis of blood flow in the retinal arteries and veins using fundus image. Comput. Math. Appl. 69, 101–116 (2015)

    Article  Google Scholar 

  16. M. Martinez-Perez, Computer analysis of the geometry of the retinal vasculature. Ph.D. thesis, Imperial College London, 2000

    Google Scholar 

  17. A. Mendivil, V. Cuartero, Color Doppler echography study of ocular blood flow velocity in patients with proliferative diabetic retinopathy after performance of retinal pan-photocoagulation: 2 years’ follow-up. Rev. Med. Univ. Navarra 42(3), 134–44 (1998)

    Google Scholar 

  18. C.D. Murray, The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. USA 12(3), 207–14 (1926)

    Article  Google Scholar 

  19. M.S. Olufsen, Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. Heart Circ. Physiol. 276(1 45-1), 257–268 (1999)

    Google Scholar 

  20. M.S. Olufsen, C.S. Peskin, W.Y. Kim, E.M. Pedersen, A. Nadim, J. Larsen, Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28(11), 1281–1299 (2000)

    Article  Google Scholar 

  21. H.D. Papenfuss, J.F. Gross, Microhemodynamics of capillary networks. Biorheology 18(3–6), 673–692 (1981)

    Google Scholar 

  22. A.R. Pries, T.W. Secomb, P. Gaehtgens, J.F. Gross, Blood flow in microvascular networks. Experiments and simulation. Circ. Res. 67(4), 826–834 (1990)

    Article  Google Scholar 

  23. A.R. Pries, T.W. Secomb, P. Gaehtgens, Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 32(4), 654–667 (1996)

    Article  Google Scholar 

  24. M. Quigley, S. Cohen, A new pressure attenuation index to evaluate retinal circulation. A link to protective factors in diabetic retinopathy. Arch. Ophthalmol. 117(1), 84–89 (1999)

    Google Scholar 

  25. C.E. Riva, J.E. Grunwald, S.H. Sinclair, B.L. Petrig, Blood velocity and volumetric flow rate in human retinal vessels. Invest. Ophthalmol. Vis. Sci. 26(8), 1124–1132 (1985)

    Google Scholar 

  26. M.E. Safar, P. Lacolley, Disturbance of macro- and microcirculation: relations with pulse pressure and cardiac organ damage. Am. J. Physiol. Heart Circ. Physiol. 293(1), H1–H7 (2007)

    Article  Google Scholar 

  27. A.K. Schuster, J.E. Fischer, U. Vossmerbaeumer, A retinal snap shot may indicate individual risk for cardiovascular disease - the MIPH eye&health study. Int. J. Cardiol. 180, 30–33 (2015)

    Article  Google Scholar 

  28. B.N. Steele, M.S. Olufsen, C.A. Taylor, Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions. Comput. Methods Biomech. Biomed. Eng. 10(1), 39–51 (2007)

    Article  Google Scholar 

  29. T. Takahashi, T. Nagaoka, H. Yanagida, T. Saitoh, A. Kamiya, T. Hein, L. Kuo, A. Yoshida, A mathematical model for the distribution of hemodynamic parameters in the human retinal microvascular network. J. Biorheol. 23(2), 77–86 (2009)

    Article  Google Scholar 

  30. B.N. Tillmann, Atlas der Anatomie (Springer, Heidelberg, 2010)

    Google Scholar 

  31. Y. Wang, B.A. Bower, J.A. Izatt, O. Tan, D. Huang, In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. J. Biomed. Opt. 12(4), 041215–041218 (2007)

    Article  Google Scholar 

  32. W. Wells, A. Colchester, S. Delp, A. Frangi, W. Niessen, K. Vincken, M. Viergever, Multiscale Vessel Enhancement Filtering. Lecture Notes in Computer Science, vol. 1496 (Springer, Berlin/Heidelberg, 1998), pp. 130–137

    Google Scholar 

  33. M. Zamir, Shear forces and blood vessel radii in the cardiovascular system. J. Gen. Physiol. 69(4), 449–461 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Doyle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kristen, A., Kelsey, L., Wintermantel, E., Doyle, B. (2016). Fundus Image Based Blood Flow Simulation of the Retinal Arteries. In: Joldes, G., Doyle, B., Wittek, A., Nielsen, P., Miller, K. (eds) Computational Biomechanics for Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-28329-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28329-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28327-2

  • Online ISBN: 978-3-319-28329-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics