Skip to main content

Fast Prediction of Femoral Biomechanics Using Supervised Machine Learning and Statistical Shape Modeling

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine

Abstract

Finite element (FE) analysis is an important computational tool in biomechanics. However, its adoption into clinical practice has been hampered by its computational complexity and required high technical competences for clinicians. In this paper we propose a supervised learning approach to predict the outcome of the FE analysis. We demonstrate our approach on clinical CT and X-ray femur images for FE predictions (FEP), with features extracted, respectively, from a statistical shape model and from 2D-based morphometric and density information. Using leave-one-out experiments and sensitivity analysis, comprising a database of 89 clinical cases, our method is capable of predicting the distribution of stress values for a walking loading condition with an average correlation coefficient of 0.984 and 0.976, for CT and X-ray images, respectively. These findings suggest that supervised learning approaches have the potential to leverage the clinical integration of mechanical simulations for the treatment of musculoskeletal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.A. Kanis, Assessment of Osteoporosis at the Primary Health Care Level (World Health, 2007), p. 339

    Google Scholar 

  2. T. Whitmarsh, K.D. Fritscher, L. Humbert, L.M. Del Rio Barquero, T. Roth, C. Kammerlander et~al., A statistical model of shape and bone mineral density distribution of the proximal femur for fracture risk assessment. Med. Image Comput. Comput. Assist. Interv. 14, 393–400 (2011)

    Google Scholar 

  3. N. Sarkalkan, J.H. Waarsing, P.K. Bos, H. Weinans, A.A. Zadpoor, Statistical shape and appearance models for fast and automated estimation of proximal femur fracture load using 2D finite element models. J. Biomech. 47, 3107–3114 (2014). doi:10.1016/j.jbiomech.2014.06.027

    Article  Google Scholar 

  4. E. Dall’Ara, B. Luisier, R. Schmidt, F. Kainberger, P. Zysset, D. Pahr, A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone 52, 27–38 (2013). doi:10.1016/j.bone.2012.09.006

    Article  Google Scholar 

  5. S. Poelert, E. Valstar, H. Weinans, A.A. Zadpoor, Patient-specific finite element modeling of bones. Proc. Inst. Mech. Eng. H 227, 464–478 (2013). doi:10.1177/0954411912467884

    Article  Google Scholar 

  6. T. Heimann, H.-P. Meinzer, Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13, 543–563 (2009). doi:10.1016/j.media.2009.05.004

    Article  Google Scholar 

  7. L. Grassi, E. Schileo, C. Boichon, M. Viceconti, F. Taddei, Comprehensive evaluation of PCA-based finite element modelling of the human femur. Med. Eng. Phys. 36, 1246–1252 (2014). doi:10.1016/j.medengphy.2014.06.021

    Article  Google Scholar 

  8. I. Castro-Mateos, J.M. Pozo, T.F. Cootes, J.M. Wilkinson, R. Eastell, A.F. Frangi, Statistical shape and appearance models in osteoporosis. Curr. Osteoporos Rep. 12, 163–173 (2014). doi:10.1007/s11914-014-0206-3

    Article  Google Scholar 

  9. T.F. Cootes, C.J. Taylor, D.H. Cooper, J. Graham, Active shape models-their training and application. Comput. Vis. Image Underst. 61, 38–59 (1995). doi:10.1006/cviu.1995.1004

    Article  Google Scholar 

  10. S. Bonaretti, C. Seiler, C. Boichon, M. Reyes, P. Büchler, Image-based vs. mesh-based statistical appearance models of the human femur: implications for finite element simulations. Med. Eng. Phys. 36, 1626–1635 (2014). doi:10.1016/j.medengphy.2014.09.006

    Article  Google Scholar 

  11. C. Boichon, et~al., Shape indexing of human femur using morphing and principal component analysis. VPH (2010)

    Google Scholar 

  12. A.D. Speirs, M.O. Heller, G.N. Duda, W.R. Taylor, Physiologically based boundary conditions in finite element modelling. J. Biomech. 40, 2318–2323 (2007). doi:10.1016/j.jbiomech.2006.10.038

    Article  Google Scholar 

  13. L. Breiman, Random forests. Mach. Learn. 45, 5–32 (2001). doi:10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  14. A. Criminisi, J. Shotton (eds.), Decision Forests for Computer Vision and Medical Image Analysis, vol. 1 (Springer, London, 2013). doi:10.1007/978-1-4471-4929-3

    Google Scholar 

  15. S. Geisser, Predictive Inference (CRC Press, 1993)

    Google Scholar 

  16. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel et~al., Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  17. G. Zheng, 3D volumetric intensity reconstruction from 2D X-ray images using partial least squares regression, in 2013 IEEE 10th International Symposium on Biomedical Imaging (IEEE, 2013), pp. 1268–1271. doi:10.1109/ISBI.2013.6556762

  18. E. Taghizadeh, G. Maquer, M. Reyes, P. Büchler, Including the Trabecular Anisotropy from Registered microCT Data in Homogenized FE Model Improves the Bone’s Mechanical Predictions (CMBBE, Amsterdam, 2014)

    Google Scholar 

  19. D. Larsson, B. Luisier, M.E. Kersh, E. Dall’ara, P.K. Zysset, M.G. Pandy et~al., Assessment of transverse isotropy in clinical-level CT images of trabecular bone using the gradient structure tensor. Ann. Biomed. Eng. 42, 950–959 (2014). doi:10.1007/s10439-014-0983-y

    Article  Google Scholar 

  20. K. Lekadir, J. Hazrati-Marangalou, C. Hoogendoorn, Z. Taylor, B. van Rietbergen, A.F. Frangi, Statistical estimation of femur micro-architecture using optimal shape and density predictors. J. Biomech. 48, 598–603 (2015). doi:10.1016/j.jbiomech.2015.01.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Taghizadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Taghizadeh, E., Kistler, M., Büchler, P., Reyes, M. (2016). Fast Prediction of Femoral Biomechanics Using Supervised Machine Learning and Statistical Shape Modeling. In: Joldes, G., Doyle, B., Wittek, A., Nielsen, P., Miller, K. (eds) Computational Biomechanics for Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-28329-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28329-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28327-2

  • Online ISBN: 978-3-319-28329-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics