Skip to main content

Specific Recognition of Single Nucleotide by Alkylating Oligonucleotides and Sensing of 8-Oxoguanine

  • Chapter
  • First Online:
Modified Nucleic Acids

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 31))

  • 1274 Accesses

Abstract

Gene expression is regulated by hierarchical mechanisms, for which not only the sequence but also the special structure of DNA and RNA play a vital role. This sophisticated systems also feature specific chemical modification of nucleotides as epigenetic gene regulations such as 5-methylation of cytosine. Meantime, endogenous and exogenous chemical species react with the nucleotides to have significant impact on the genetic function by causing mutations. Among mutations, a single nucleotide alteration is the most frequently found in the disease-relating genes. Therefore, for the diagnostic and therapeutic purposes, oligonucleotides are desired to discriminate a single nucleotide difference. However, because of non-covalent hybridization of the oligonucleotide with DNA and RNA, discrimination of a single nucleotide difference is not always easy. We have focused on selective alkylation as a reliable strategy for a single base recognition. Molecular design has been performed so that a non-covalent complex in a hybridized complex induces a selective reaction to the target base. On the other hand, guanine is the most susceptible base for oxidation to produce 8-oxoguanine which has a strong mutagenicity. 8-Oxoguanine formed in cells is regarded as a biomarker of oxidative stress of the cell, and a convenient sensing method is desired for diagnostic purposes. Also, determination of 8-oxo-2′-deoxyguanosine in DNA is important to reveal the oxidative damaged site in DNA. In this chapter, design concept and specific alkylating reactions will be introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078. doi:10.1038/nature08467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stone MP, Huang H, Brown KL, Shanmugam G (2011) Chemistry and structural biology of DNA damage and biological consequences. Chem Biodivers 8:1571–1615. doi:10.1002/cbdv.201100033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jena NR (2012) DNA damage by reactive species: mechanisms, mutation and repair. J Biosci 37:503–517. doi:10.1007/s12038-012-9218-2

    Article  CAS  PubMed  Google Scholar 

  4. Motgomery JA (1995) Antimetabolites. In: Foye WO (ed) Cancer chemotherapeutic agents. American Chemical Society, Washington, DC, pp 111–204

    Google Scholar 

  5. Grillari J, Katinger H, Voglauer R (2007) Contributions of DNA interstrand cross-links to aging of cells and organisms. Nucleic Acids Res 35:7566–7576. doi:10.1093/nar/gkm1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Toussaint M, Levasseur G, Tremblay M, Paquette M, Conconi A (2005) Psoralen photocrosslinking, a tool to study the chromatin structure of RNA polymerase I—transcribed ribosomal genes. Biochem Cell Biol 83:449–459. doi:10.1139/o05-141

    Article  CAS  PubMed  Google Scholar 

  7. Murakami A, Yamayoshi A, Iwase R, Nishida J, Yamaoka T, Wake N (2001) Photodynamic antisense regulation of human cervical carcinoma cell growth using psoralen-conjugated oligo(nucleoside phosphorothioate). Eur J Pharm Sci 13:25–34. doi:10.1016/S0928-0987(00)00204-9

    Article  CAS  PubMed  Google Scholar 

  8. Higuchi M, Kobori A, Yamayoshi A, Murakami A (2009) Synthesis of antisense oligonucleotides containing 2′-O-psoralenylmethoxyalkyl adenosine for photodynamic regulation of point mutations in RNA. Bioorg Med Chem 17:475–483. doi:10.1016/j.bmc.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Tseng YD, Kwon SY, D’Espaux L, Bunch JS, McEuen PL, Luo D (2004) Controlled assembly of dendrimer-like DNA. Nat Mater 3:38–42. doi:10.1038/nmat1045

    Article  CAS  PubMed  Google Scholar 

  10. Tagawa M, Shohda K, Fujimoto K, Suyama A (2011) Stabilization of DNA nanostructures by photo-cross-linking. Soft Matter 7:10931. doi:10.1039/c1sm06303k

    Article  CAS  Google Scholar 

  11. Rajendran A, Endo M, Katsuda Y, Hidaka K, Sugiyama H (2011) Photo-cross-linking-assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly. J Am Chem Soc 133:14488–14491. doi:10.1021/ja204546h

    Article  CAS  PubMed  Google Scholar 

  12. Glick GD (2003) Engineering terminal disulfide bonds into DNA. In: Beaucage SL (ed) Current protocols in nucleic acid chemistry, vol 2. Wiley, New York, pp 5.7.1–5.7.13. doi:10.1002/0471142700.nc0507s13

  13. Nakatani K, Yoshida T, Saito I (2002) Photochemistry of benzophenone immobilized in a major groove of DNA: formation of thermally reversible interstrand cross-link. J Am Chem Soc 124:2118–2119. doi:10.1021/ja017611r

    Article  CAS  PubMed  Google Scholar 

  14. Fujimoto K, Konishi-Hiratsuka K, Sakamoto T, Yoshimura Y (2010) Site-specific photochemical RNA editing. Chem Commun (Camb) 46:7545–7547. doi:10.1039/c0cc03151h

    Article  CAS  Google Scholar 

  15. Zhou Q, Rokita SE (2003) A general strategy for target-promoted alkylation in biological systems. Proc Natl Acad Sci U S A 100:15452–15457. doi:10.1073/pnas.2533112100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rokita SE (ed) (2009) Quinone methides. Wiley, New York, pp 297–327

    Book  Google Scholar 

  17. Peng X, In SH, Li H, Seidman MM, Greenberg MM (2008) Interstrand cross-link formation in duplex and triplex DNA by modified pyrimidines. J Am Chem Soc 130:10299–10306. doi:10.1021/ja802177u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Op de Beeck M, Madder A (2012) Sequence specific DNA cross-linking triggered by visible light. J Am Chem Soc 134:10737–10740. doi:10.1021/ja301901p

    Article  CAS  PubMed  Google Scholar 

  19. Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res Rev Mutat Res 567:1–61. doi:10.1016/j.mrrev.2003.11.001

    Article  CAS  Google Scholar 

  20. Shibutani S, Takeshita M, Grollman AP (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349:431–434. doi:10.1038/349431a0

    Article  CAS  PubMed  Google Scholar 

  21. Nagatsugi F, Kawasaki T, Usui D, Maeda M, Sasaki S (1999) Highly efficient and selective cross-linking to cytidine based on a new strategy for auto-activation within a duplex. J Am Chem Soc 121:6753–6754. doi:10.1021/ja990356e

    Article  CAS  Google Scholar 

  22. Nagatsugi F, Tokuda N, Maeda M, Sasaki S (2001) A new reactive nucleoside analogue for highly reactive and selective cross-linking reaction to cytidine under neutral conditions. Bioorg Med Chem Lett 11:2577–2579. doi:10.1016/S0960-894X(01)00505-4

    Article  CAS  PubMed  Google Scholar 

  23. Nagatsugi F, Matsuyama Y, Maeda M, Sasaki S (2002) Selective cross-linking to the adenine of the TA interrupting site within the triple helix. Bioorg Med Chem Lett 12:487–489. doi:10.1016/S0960-894X(01)00783-1

    Article  CAS  PubMed  Google Scholar 

  24. Kawasaki T, Nagatsugi F, Ali MM, Maeda M, Sugiyama K, Hori K, Sasaki S (2005) Hybridization-promoted and cytidine-selective activation for cross-linking with the use of 2-amino-6-vinylpurine derivatives. J Org Chem 70:14–23. doi:10.1021/jo048298p

    Article  CAS  PubMed  Google Scholar 

  25. Sasaki S, Nagatsugi F (2006) Application of unnatural oligonucleotides to chemical modification of gene expression. Curr Opin Chem Biol 10:615–621. doi:10.1016/j.cbpa.2006.10.006

    Article  CAS  PubMed  Google Scholar 

  26. Nagatsugi F, Imoto S (2011) Induced cross-linking reactions to target genes using modified oligonucleotides. Org Biomol Chem 9:2579–2585. doi:10.1039/c0ob00819b

    Article  CAS  PubMed  Google Scholar 

  27. Ali MM, Oishi M, Nagatsugi F, Mori K, Nagasaki Y, Kataoka K, Sasaki S (2006) Intracellular inducible alkylation system that exhibits antisense effects with greater potency and selectivity than the natural oligonucleotide. Angew Chem Int Ed 45:3136–3140. doi:10.1002/anie.200504441

    Article  CAS  Google Scholar 

  28. Nagatsugi F, Sasaki S, Miller PS, Seidman MM (2003) Site-specific mutagenesis by triple helix-forming oligonucleotides containing a reactive nucleoside analog. Nucleic Acids Res 31:e31. doi:10.1093/nar/gng031

    Article  PubMed  PubMed Central  Google Scholar 

  29. Taniguchi Y, Kurose Y, Nishioka T, Nagatsugi F, Sasaki S (2010) The alkyl-connected 2-amino-6-vinylpurine (AVP) crosslinking agent for improved selectivity to the cytosine base in RNA. Bioorg Med Chem 18:2894–2901. doi:10.1016/j.bmc.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  30. Imoto S, Hori T, Hagihara S, Taniguchi Y, Sasaki S, Nagatsugi F (2010) Alteration of cross-linking selectivity with the 2′-OMe analogue of 2-amino-6-vinylpurine and evaluation of antisense effects. Bioorg Med Chem Lett 20:6121–6124. doi:10.1016/j.bmcl.2010.08.027

    Article  CAS  PubMed  Google Scholar 

  31. Imoto S, Chikuni T, Kansui H, Kunieda T, Nagatsugi F (2012) Fast DNA interstrand cross-linking reaction by 6-vinylpurine. Nucleosides Nucleotides Nucleic Acids 31:752–762. doi:10.1080/15257770.2012.726756

    Article  CAS  PubMed  Google Scholar 

  32. Hagihara S, Kusano S, Lin WC, Chao XG, Hori T, Imoto S, Nagatsugi F (2012) Production of truncated protein by the crosslink formation of mRNA with 2′-OMe oligoribonucleotide containing 2-amino-6-vinylpurine. Bioorg Med Chem Lett 22:3870–3872. doi:10.1016/j.bmcl.2012.04.123

    Article  CAS  PubMed  Google Scholar 

  33. Hagihara S, Lin W-C, Kusano S, Chao X, Hori T, Imoto S, Nagatsugi F (2013) The crosslink formation of 2′-OMe oligonucleotide containing 2-amino-6-vinylpurine protects mRNA from miRNA-mediated silencing. ChemBioChem 14:1427–1429. doi:10.1002/cbic.201300382

    Article  CAS  PubMed  Google Scholar 

  34. Kusano S, Haruyama T, Ishiyama S, Hagihara S, Nagatsugi F (2014) Development of the crosslinking reactions to RNA triggered by oxidation. Chem Commun (Camb) 50:3951–3954. doi:10.1039/c3cc49463b

    Article  CAS  Google Scholar 

  35. Hattori K, Hirohama T, Imoto S, Kusano S, Nagatsugi F (2009) Formation of highly selective and efficient interstrand cross-linking to thymine without photo-irradiation. Chem Commun (Camb) (42):6463–6465. doi:10.1039/b915381k

  36. Murat P, Balasubramanian S (2014) Existence and consequences of G-quadruplex structures in DNA. Curr Opin Genet Dev 25:22–29. doi:10.1016/j.gde.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  37. Henderson A, Wu Y, Huang YC, Chavez EA, Platt J, Johnson FB, Brosh RM, Sen D, Lansdorp PM (2014) Detection of G-quadruplex DNA in mammalian cells. Nucleic Acids Res 42:860–869. doi:10.1093/nar/gkt957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parkinson GN, Lee MPH, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417:876–880. doi:10.1038/nature755

    Article  CAS  PubMed  Google Scholar 

  39. Phan AT, Modi YS, Patel DJ (2004) Propeller-type parallel-stranded G-quadruplexes in the human c-myc promoter. J Am Chem Soc 126:8710–8716. doi:10.1021/ja048805k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lam EYN, Beraldi D, Tannahill D, Balasubramanian S (2013) G-quadruplex structures are stable and detectable in human genomic DNA. Nat Commun 4:1796. doi:10.1038/ncomms2792

    Article  PubMed  PubMed Central  Google Scholar 

  41. Brooks TA, Kendrick S, Hurley L (2010) Making sense of G-quadruplex and i-motif functions in oncogene promoters. FEBS J 277:3459–3469. doi:10.1111/j.1742-4658.2010.07759.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gehring K, Leroy JL, Guéron M (1993) A tetrameric DNA structure with protonated cytosine-cytosine base pairs. Nature 363:561–565. doi:10.1038/363561a0

    Article  CAS  PubMed  Google Scholar 

  43. Leroy JL, Guéron M, Mergny JL, Hélène C (1994) Intramolecular folding of a fragment of the cytosine-rich strand of telomeric DNA into an i-motif. Nucleic Acids Res 22:1600–1606. doi:10.1093/nar/22.9.1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mergny J, Lacroix L, Han X, Leroy J, Helene C (1995) Intramolecular folding of pyrimidine oligodeoxynucleotides into an i-DNA motif. J Am Chem Soc 117:8887–8898. doi:10.1021/ja00140a001

    Article  CAS  Google Scholar 

  45. Zhou J, Wei C, Jia G, Wang X, Feng Z, Li C (2010) Formation of i-motif structure at neutral and slightly alkaline pH. Mol Biosyst 6:580–586. doi:10.1039/b919600e

    Article  CAS  PubMed  Google Scholar 

  46. Day HA, Huguin C, Waller ZAE (2013) Silver cations fold i-motif at neutral pH. Chem Commun 49:7696–7698

    Article  CAS  Google Scholar 

  47. Dong Y, Yang Z, Liu D (2014) DNA nanotechnology based on i-motif structures. Acc Chem Res 47:1853–1860. doi:10.1021/ar500073a

    Article  CAS  PubMed  Google Scholar 

  48. Day HA, Pavlou P, Waller ZAE (2014) i-Motif DNA: structure, stability and targeting with ligands. Bioorg Med Chem 22:4407–4418. doi:10.1016/j.bmc.2014.05.047

    Article  CAS  PubMed  Google Scholar 

  49. Cui J, Waltman P, Le VH, Lewis EA (2013) The effect of molecular crowding on the stability of human c-MYC promoter sequence I-motif at neutral pH. Molecules 18:12751–12767. doi:10.3390/molecules181012751

    Article  CAS  PubMed  Google Scholar 

  50. Rajendran A, Nakano S, Sugimoto N (2010) Molecular crowding of the cosolutes induces an intramolecular i-motif structure of triplet repeat DNA oligomers at neutral pH. Chem Commun (Camb) 46:1299–1301. doi:10.1039/b922050j

    Article  CAS  Google Scholar 

  51. Bhavsar-Jog YP, Van Dornshuld E, Brooks TA, Tschumper GS, Wadkins RM (2014) Epigenetic modification, dehydration, and molecular crowding effects on the thermodynamics of i-motif structure formation from C-rich DNA. Biochemistry 53:1586–1594. doi:10.1021/bi401523b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kikuta K, Haishun P, Brazier J, Taniguchi Y, Onizuka K, Nagatsugi F, Sasaki S (2015) Stabilization of the i-motif structure by the intrastrand cross-link formation. Bioorg Med Chem Lett 25(16):3307–3310

    Article  CAS  PubMed  Google Scholar 

  53. Kaushik M, Suehl N, Marky LA (2007) Calorimetric unfolding of the bimolecular and i-motif complexes of the human telomere complementary strand, d(C(3)TA(2))(4). Biophys Chem 126:154–164. doi:10.1016/j.bpc.2006.05.031

    Article  CAS  PubMed  Google Scholar 

  54. Sasaki S, Onizuka K, Taniguchi Y (2011) The oligodeoxynucleotide probes for the site-specific modification of RNA. Chem Soc Rev 40:5698. doi:10.1039/c1cs15066a

    Article  CAS  PubMed  Google Scholar 

  55. Jitsuzaki D, Onizuka K, Nishimoto A, Oshiro I, Taniguchi Y, Sasaki S (2014) Remarkable acceleration of a DNA/RNA inter-strand functionality transfer reaction to modify a cytosine residue: the proximity effect via complexation with a metal cation. Nucleic Acids Res 42:8808–8815. doi:10.1093/nar/gku538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ali M, Alam R, Kawasaki T, Nakayama S, Nagatsugi F, Sasaki S (2004) Sequence- and base-specific delivery of nitric oxide to cytidine and 5-methylcytidine leading to efficient deamination. J Am Chem Soc 126:8864–8865. doi:10.1021/ja0498888

    Article  CAS  PubMed  Google Scholar 

  57. Onizuka K, Taniguchi Y, Sasaki S (2009) Site-specific covalent modification of RNA guided by functionality-transfer oligodeoxynucleotides. Bioconjug Chem 20:799–803. doi:10.1021/bc900009p

    Article  CAS  PubMed  Google Scholar 

  58. Onizuka K, Taniguchi Y, Sasaki S (2010) A new usage of functionalized oligodeoxynucleotide probe for site-specific modification of a guanine base within RNA. Nucleic Acids Res 38:1760–1766. doi:10.1093/nar/gkp930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Onizuka K, Taniguchi Y, Sasaki S (2010) Activation and alteration of base selectivity by metal cations in the functionality-transfer reaction for RNA modification. Bioconjug Chem 21:1508–1512. doi:10.1021/bc100131j

    Article  CAS  PubMed  Google Scholar 

  60. Onizuka K, Shibata A, Taniguchi Y, Sasaki S (2011) Pin-point chemical modification of RNA with diverse molecules through the functionality transfer reaction and the copper-catalyzed azide-alkyne cycloaddition reaction. Chem Commun (Camb) 47:5004–5006. doi:10.1039/c1cc10582e

    Article  CAS  Google Scholar 

  61. Onizuka K, Nishioka T, Li Z, Jitsuzaki D, Taniguchi Y, Sasaki S (2012) An efficient and simple method for site-selective modification of O6-methyl-2′-deoxyguanosine in DNA. Chem Commun 48:3969–3971

    Article  CAS  Google Scholar 

  62. Oshiro I, Jitsuzaki D, Onizuka K, Nishimoto A, Taniguchi Y, Sasaki S (2015) Site-specific modification of the 6-amino group of adenosine in RNA by an interstrand functionality-transfer reaction with an S-functionalized 4-thiothymidine. ChemBioChem 16:1199–1204. doi:10.1002/cbic.201500084

    Article  CAS  PubMed  Google Scholar 

  63. Poulsen HE, Nadal LL, Broedbaek K, Nielsen PE, Weimann A (2014) Detection and interpretation of 8-oxodG and 8-oxoGua in urine, plasma and cerebrospinal fluid. Biochim Biophys Acta 1840:801–808. doi:10.1016/j.bbagen.2013.06.009

    Article  CAS  PubMed  Google Scholar 

  64. Bruner SD, Norman DP, Verdine GL (2000) Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403:859–866. doi:10.1038/35002510

    Article  CAS  PubMed  Google Scholar 

  65. Lin KY, Matteucci MD (1998) A cytosine analogue capable of clamp-like binding to a guanine in helical nucleic acids. J Am Chem Soc 120:8531–8532

    Article  CAS  Google Scholar 

  66. Flanagan WM, Wolf JJ, Olson P, Grant D, Lin KY, Wagner RW, Matteucci MD (1999) A cytosine analog that confers enhanced potency to antisense oligonucleotides. Proc Natl Acad Sci U S A 96:3513–3518. doi:10.1073/pnas.96.7.3513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nakagawa O, Ono S, Li Z, Tsujimoto A, Sasaki S (2007) Specific fluorescent probe for 8-oxoguanosine. Angew Chem Int Ed 46:4500–4503. doi:10.1002/anie.200700671

    Article  CAS  Google Scholar 

  68. Li Z, Nakagawa O, Koga Y, Taniguchi Y, Sasaki S (2010) Synthesis of new derivatives of 8-oxoG-clamp for better understanding the recognition mode and improvement of selective affinity. Bioorg Med Chem 18:3992–3998. doi:10.1016/j.bmc.2010.04.025

    Article  CAS  PubMed  Google Scholar 

  69. Koga Y, Fuchi Y, Nakagawa O, Sasaki S (2011) Optimization of fluorescence property of the 8-oxodGclamp derivative for better selectivity for 8-oxo-2′-deoxyguanosine. Tetrahedron 67:6746–6752. doi:10.1016/j.tet.2011.03.111

    Article  CAS  Google Scholar 

  70. Ohno M, Miura T, Furuichi M, Tominaga Y, Tsuchimoto D, Sakumi K, Nakabeppu Y (2006) A genome-wide distribution of 8-oxoguanine correlates with the preferred regions for recombination and single nucleotide polymorphism in the human genome. Genome Res 16:567–575. doi:10.1101/gr.4769606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kawanishi S, Oikawa S, Murata M, Tsukitome H, Saito I (1999) Site-specific oxidation at GG and GGG sequences in double-stranded DNA by benzoyl peroxide as a tumor promoter. Biochemistry 38:16733–16739. doi:10.1021/bi990890z

    Article  CAS  PubMed  Google Scholar 

  72. Fleming AM, Burrows CJ (2013) G-quadruplex folds of the human telomere sequence alter the site reactivity and reaction pathway of guanine oxidation compared to duplex DNA. Chem Res Toxicol 26:593–607. doi:10.1021/tx400028y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Toyokuni S, Tanaka T, Hattori Y, Nishiyama Y, Yoshida A, Uchida K, Hiai H, Ochi H, Osawa T (1997) Quantitative immunohistochemical determination of 8-hydroxy-2′-deoxyguanosine by a monoclonal antibody N45.1: its application to ferric nitrilotriacetate-induced renal carcinogenesis model. Lab Invest 76:365–374

    CAS  PubMed  Google Scholar 

  74. Zhang B, Guo LH, Greenberg MM (2012) Quantification of 8-oxodGuo lesions in double-stranded DNA using a photoelectrochemical DNA sensor. Anal Chem 84:6048–6053. doi:10.1021/ac300866u

    Article  CAS  PubMed  Google Scholar 

  75. Xue L, Greenberg MM (2007) Facile quantification of lesions derived from 2′-deoxyguanosine in DNA. J Am Chem Soc 129:7010–7011. doi:10.1021/ja072174n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. An N, Fleming AM, White HS, Burrows CJ (2015) Nanopore detection of 8-oxoguanine in the human telomere repeat sequence. ACS Nano 9:4296–4307. doi:10.1021/acsnano.5b00722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lim KS, Cui L, Taghizadeh K, Wishnok JS, Chan W, Demott MS, Babu IR, Tannenbaum SR, Dedon PC (2012) In situ analysis of 8-Oxo-7,8-dihydro-2′-deoxyguanosine oxidation reveals sequence- and agent-specific damage spectra. J Am Chem Soc 134:18053–18064. doi:10.1021/ja307525h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Furman JL, Mok PW, Badran AH, Ghosh I (2011) Turn-on DNA damage sensors for the direct detection of 8-oxoguanine and photoproducts in native DNA. J Am Chem Soc 133:12518–12527. doi:10.1021/ja1116606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nasr T, Li Z, Nakagawa O, Taniguchi Y, Ono S, Sasaki S (2009) Selective fluorescence quenching of the 8-oxoG-clamp by 8-oxodeoxyguanosine in ODN. Bioorg Med Chem Lett 19:727–730. doi:10.1016/j.bmcl.2008.12.036

    Article  CAS  PubMed  Google Scholar 

  80. Taniguchi Y, Kawaguchi R, Sasaki S (2011) Adenosine-1,3-diazaphenoxazine derivative for selective base pair formation with 8-oxo-2′-deoxyguanosine in DNA. J Am Chem Soc 133:7272–7275. doi:10.1021/ja200327u

    Article  CAS  PubMed  Google Scholar 

  81. Taniguchi Y, Koga Y, Fukabori K, Kawaguchi R, Sasaki S (2012) OFF-to-ON type fluorescent probe for the detection of 8-oxo-dG in DNA by the Adap-masked ODN probe. Bioorg Med Chem Lett 22:543–546. doi:10.1016/j.bmcl.2011.10.093

    Article  CAS  PubMed  Google Scholar 

  82. Taniguchi Y, Fukabori K, Kikukawa Y, Koga Y, Sasaki S (2014) 2,6-diaminopurine nucleoside derivative of 9-ethyloxy-2-oxo-1,3-diazaphenoxazine (2-amino-Adap) for recognition of 8-oxo-dG in DNA. Bioorg Med Chem 22:1634–1641. doi:10.1016/j.bmc.2014.01.024

    Article  CAS  PubMed  Google Scholar 

  83. Steemers FJ, Chang W, Lee G, Barker DL, Shen R, Gunderson KL (2006) Whole-genome genotyping with the single-base extension assay. Nat Methods 3:31–33. doi:10.1038/nmeth842

    Article  CAS  PubMed  Google Scholar 

  84. Liang F, Liu Y-Z, Zhang P (2013) Universal base analogues and their applications in DNA sequencing technology. RSC Adv 3:14910. doi:10.1039/c3ra41492b

    Article  CAS  Google Scholar 

  85. Loakes D (2001) Survey and summary: the applications of universal DNA base analogues. Nucleic Acids Res 29:2437–2447. doi:10.1093/nar/29.12.2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Taniguchi Y, Kikukawa Y, Sasaki S (2015) Discrimination between 8-oxo-2′-deoxyguanosine and 2′-deoxyguanosine in DNA by the single nucleotide primer extension reaction with Adap triphosphate. Angew Chem Int Ed 54:5147–5151. doi:10.1002/anie.201412086

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Sasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sasaki, S., Taniguchi, Y., Nagatsugi, F. (2016). Specific Recognition of Single Nucleotide by Alkylating Oligonucleotides and Sensing of 8-Oxoguanine. In: Nakatani, K., Tor, Y. (eds) Modified Nucleic Acids. Nucleic Acids and Molecular Biology, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-27111-8_11

Download citation

Publish with us

Policies and ethics