Skip to main content

Neuroimaging of Narcolepsy

  • Chapter
Narcolepsy

Abstract

Narcolepsy–cataplexy is a disabling sleep disorder marked by excessive daytime sleepiness and sudden, uncontrollable decreases in muscle tone (cataplexy). It is believed to be caused by the autoimmune destruction of hypocretin (orexin) neurons in the hypothalamus. Neuroimaging studies, both structural and functional, have investigated the neural correlates of narcolepsy using a variety of imaging modalities, namely, magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography, single-photon emission computed tomography and functional magnetic resonance imaging. Hypothalamic damage is a common, though not ubiquitous, finding among anatomical and spectroscopic studies, in support of the hypocretinergic depletion theory of narcoleptic pathophysiology. Alterations to fronto-temporal cortices and the thalamus were also found in a number of anatomical studies, possibly relating to cognitive, mood and sleep disturbances. As for functional imaging, several blood flow and metabolic studies have revealed hypoactivation in the hypothalamus, thalamus and fronto-temporal cortices during resting wakefulness, in agreement with structural data, but functional data during sleep are lacking. Emotional reactivity was probed in several functional imaging paradigms, the results of which converge with anatomical findings of hypothalamic and amygdalar changes in supporting an altered emotional network response in narcolepsy, possibly underlying cataplectic episodes. Lastly, extensive research has examined neurotransmission in narcolepsy, mostly dopaminergic, but no consistent difference was found between narcoleptic patients and controls. Overall, neuroimaging findings in narcolepsy constitute a substantial contribution to our knowledge of the pathophysiology of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dauvilliers Y, Arnulf I, Mignot E. Narcolepsy with cataplexy. Lancet. 2007;369(9560):499–511. PubMed Epub 2007/02/13. eng.

    Article  PubMed  Google Scholar 

  2. Findley L, Unverzagt M, Guchu R, Fabrizio M, Buckner J, Suratt P. Vigilance and automobile accidents in patients with sleep apnea or narcolepsy. Chest. 1995;108(3):619–24. PubMed.

    Article  PubMed  CAS  Google Scholar 

  3. Carskadon MA, Dement WC, Mitler MM, Roth T, Westbrook PR, Keenan S. Guidelines for the multiple sleep latency test (MSLT): a standard measure of sleepiness. Sleep. 1986;9(4):519–24. PubMed Epub 1986/12/01. eng.

    PubMed  CAS  Google Scholar 

  4. Dauvilliers Y, Montplaisir J, Molinari N, Carlander B, Ondze B, Besset A, et al. Age at onset of narcolepsy in two large populations of patients in France and Quebec. Neurology. 2001;57(11):2029–33. PubMed.

    Article  PubMed  CAS  Google Scholar 

  5. Black J, Houghton WC. Sodium oxybate improves excessive daytime sleepiness in narcolepsy. Sleep. 2006;29(7):939–46. PubMed.

    PubMed  Google Scholar 

  6. Mignot E, Hayduk R, Black J, Grumet FC, Guilleminault C. HLA DQB1*0602 is associated with cataplexy in 509 narcoleptic patients. Sleep. 1997;20(11):1012–20. PubMed.

    PubMed  CAS  Google Scholar 

  7. Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98(3):365–76. PubMed.

    Article  PubMed  CAS  Google Scholar 

  8. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet. 2000;355(9197):39–40. PubMed.

    Article  PubMed  CAS  Google Scholar 

  9. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27(3):469–74. PubMed.

    Article  PubMed  CAS  Google Scholar 

  10. Mignot E, Lammers GJ, Ripley B, Okun M, Nevsimalova S, Overeem S, et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol. 2002;59(10):1553–62. PubMed Epub 2002/10/11. Eng.

    Article  PubMed  Google Scholar 

  11. Baumann CR, Khatami R, Werth E, Bassetti CL. Hypocretin (orexin) deficiency predicts severe objective excessive daytime sleepiness in narcolepsy with cataplexy. J Neurol Neurosurg Psychiatry. 2006;77(3):402–4. PubMed Pubmed Central PMCID: 2077721. Epub 2006/02/18. eng.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Govindaiah G, Cox CL. Modulation of thalamic neuron excitability by orexins. Neuropharmacology. 2006;51(3):414–25. PubMed.

    Article  PubMed  CAS  Google Scholar 

  13. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;18(23):9996–10015. PubMed.

    PubMed  CAS  Google Scholar 

  14. Baumann CR, Bassetti CL. Hypocretins (orexins): clinical impact of the discovery of a neurotransmitter. Sleep Med Rev. 2005;9(4):253–68. PubMed.

    Article  PubMed  Google Scholar 

  15. Dang-Vu TT. Neuroimaging of treatment response in narcolepsy. In: Nofzinger EA, Maquet P, Thorpy M, editors. Neuroimaging of sleep and sleep disorders. Cambridge: Cambridge University Press; 2013. p. 228–30.

    Chapter  Google Scholar 

  16. Plazzi G, Montagna P, Provini F, Bizzi A, Cohen M, Lugaresi E. Pontine lesions in idiopathic narcolepsy. Neurology. 1996;46(5):1250–4. PubMed.

    Article  PubMed  CAS  Google Scholar 

  17. Bassetti C, Aldrich MS, Quint DJ. MRI findings in narcolepsy. Sleep. 1997;20(8):630–1. PubMed.

    PubMed  CAS  Google Scholar 

  18. Frey JL, Heiserman JE. Absence of pontine lesions in narcolepsy. Neurology. 1997;48(4):1097–9. PubMed.

    Article  PubMed  CAS  Google Scholar 

  19. Pullicino P, Ostrow P, Miller L, Snyder W, Munschauer F. Pontine ischemic rarefaction. Ann Neurol. 1995;37(4):460–6. PubMed.

    Article  PubMed  CAS  Google Scholar 

  20. Buskova J, Vaneckova M, Sonka K, Seidl Z, Nevsimalova S. Reduced hypothalamic gray matter in narcolepsy with cataplexy. Neuro Endocrinol Lett. 2006;27(6):769–72. PubMed eng.

    PubMed  CAS  Google Scholar 

  21. Draganski B, Geisler P, Hajak G, Schuierer G, Bogdahn U, Winkler J, et al. Hypothalamic gray matter changes in narcoleptic patients. Nat Med. 2002;8(11):1186–8. PubMed.

    Article  PubMed  CAS  Google Scholar 

  22. Joo EY, Tae WS, Kim ST, Hong SB. Gray matter concentration abnormality in brains of narcolepsy patients. Korean J Radiol. 2009;10(6):552–8. PubMed Pubmed Central PMCID: 2770823. Epub 2009/11/04. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kim SJ, Lyoo IK, Lee YS, Lee JY, Yoon SJ, Kim JE, et al. Gray matter deficits in young adults with narcolepsy. Acta Neurol Scand. 2009;119(1):61–7. PubMed Epub 2008/07/16. eng.

    Article  PubMed  CAS  Google Scholar 

  24. Overeem S, Steens SC, Good CD, Ferrari MD, Mignot E, Frackowiak RS, et al. Voxel-based morphometry in hypocretin-deficient narcolepsy. Sleep. 2003;26(1):44–6. PubMed.

    PubMed  Google Scholar 

  25. Kaufmann C, Schuld A, Pollmacher T, Auer DP. Reduced cortical gray matter in narcolepsy: preliminary findings with voxel-based morphometry. Neurology. 2002;58(12):1852–5. PubMed.

    Article  PubMed  Google Scholar 

  26. Brenneis C, Brandauer E, Frauscher B, Schocke M, Trieb T, Poewe W, et al. Voxel-based morphometry in narcolepsy. Sleep Med. 2005;30. PubMed.

    Google Scholar 

  27. Scherfler C, Frauscher B, Schocke M, Nocker M, Gschliesser V, Ehrmann L, et al. White and gray matter abnormalities in narcolepsy with cataplexy. Sleep. 2012;35(3):345–51. PubMed Epub 2012/03/02. eng.

    PubMed  PubMed Central  Google Scholar 

  28. Joo EY, Jeon S, Lee M, Kim ST, Yoon U, Koo DL, et al. Analysis of cortical thickness in narcolepsy patients with cataplexy. Sleep. 2011;34(10):1357–64. PubMed Pubmed Central PMCID: 3174837. Epub 2011/10/04. eng.

    PubMed  PubMed Central  Google Scholar 

  29. Schaer M, Poryazova R, Schwartz S, Bassetti CL, Baumann CR. Cortical morphometry in narcolepsy with cataplexy. J Sleep Res. 2012;21(5):487–94. PubMed Epub 2012/02/09. Eng.

    Article  PubMed  Google Scholar 

  30. Joo EY, Kim SH, Kim ST, Hong SB. Hippocampal volume and memory in narcoleptics with cataplexy. Sleep Med. 2012;13(4):396–401. PubMed Epub 2012/03/01. eng.

    Article  PubMed  Google Scholar 

  31. Brabec J, Rulseh A, Horinek D, Pala A, Guerreiro H, Buskova J, et al. Volume of the amygdala is reduced in patients with narcolepsy—a structural MRI study. Neuro Endocrinol Lett. 2011;32(5):652–6. PubMed Epub 2011/12/15. eng.

    PubMed  Google Scholar 

  32. Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology. 2000;217(2):331–45. PubMed.

    Article  PubMed  CAS  Google Scholar 

  33. Menzler K, Belke M, Unger MM, Ohletz T, Keil B, Heverhagen JT, et al. DTI reveals hypothalamic and brainstem white matter lesions in patients with idiopathic narcolepsy. Sleep Med. 2012;13(6):736–42. PubMed Epub 2012/05/01. eng.

    Article  PubMed  CAS  Google Scholar 

  34. Nakamura M, Nishida S, Hayashida K, Ueki Y, Dauvilliers Y, Inoue Y. Differences in brain morphological findings between narcolepsy with and without cataplexy. PLoS One. 2013;8(11), e81059. PubMed Pubmed Central PMCID: 3842956.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ellis CM, Simmons A, Lemmens G, Williams SC, Parkes JD. Proton spectroscopy in the narcoleptic syndrome. Is there evidence of a brainstem lesion? Neurology. 1998;50(2 Suppl 1):S23–6. PubMed eng.

    Article  PubMed  CAS  Google Scholar 

  36. Howe FA, Maxwell RJ, Saunders DE, Brown MM, Griffiths JR. Proton spectroscopy in vivo. Magn Reson Q. 1993;9(1):31–59. PubMed.

    PubMed  CAS  Google Scholar 

  37. Lodi R, Tonon C, Vignatelli L, Iotti S, Montagna P, Barbiroli B, et al. In vivo evidence of neuronal loss in the hypothalamus of narcoleptic patients. Neurology. 2004;63(8):1513–5. PubMed.

    Article  PubMed  CAS  Google Scholar 

  38. Tonon C, Franceschini C, Testa C, Manners DN, Poli F, Mostacci B, et al. Distribution of neurochemical abnormalities in patients with narcolepsy with cataplexy: an in vivo brain proton MR spectroscopy study. Brain Res Bull. 2009;80(3):147–50. PubMed.

    Article  PubMed  CAS  Google Scholar 

  39. Poryazova R, Schnepf B, Werth E, Khatami R, Dydak U, Meier D, et al. Evidence for metabolic hypothalamo-amygdala dysfunction in narcolepsy. Sleep. 2009;32(5):607–13. PubMed Pubmed Central PMCID: 2675895. Epub 2009/06/02. eng.

    PubMed  PubMed Central  Google Scholar 

  40. De Stefano N, Matthews PM, Arnold DL. Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med. 1995;34(5):721–7. PubMed.

    Article  PubMed  Google Scholar 

  41. Desseilles M, Dang-Vu T, Schabus M, Sterpenich V, Maquet P, Schwartz S. Neuroimaging insights into the pathophysiology of sleep disorders. Sleep. 2008;31(6):777–94. PubMed Pubmed Central PMCID: 2442420.

    PubMed  PubMed Central  Google Scholar 

  42. Kim SJ, Lyoo IK, Lee YS, Sung YH, Kim HJ, Kim JH, et al. Increased GABA levels in medial prefrontal cortex of young adults with narcolepsy. Sleep. 2008;31(3):342–7. PubMed eng.

    PubMed  PubMed Central  Google Scholar 

  43. Plante DT, Jensen JE, Schoerning L, Winkelman JW. Reduced gamma-aminobutyric acid in occipital and anterior cingulate cortices in primary insomnia: a link to major depressive disorder? Neuropsychopharmacology. 2012;37(6):1548–57. PubMed Pubmed Central PMCID: 3327859.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Winkelman JW, Buxton OM, Jensen JE, Benson KL, O’Connor SP, Wang W, et al. Reduced brain GABA in primary insomnia: preliminary data from 4T proton magnetic resonance spectroscopy (1H-MRS). Sleep. 2008;31(11):1499–506. PubMed Pubmed Central PMCID: 2579978.

    PubMed  PubMed Central  Google Scholar 

  45. Meyer JS, Sakai F, Karacan I, Derman S, Yamamoto M. Sleep apnea, narcolepsy, and dreaming: regional cerebral hemodynamics. Ann Neurol. 1980;7(5):479–85. PubMed eng.

    Article  PubMed  CAS  Google Scholar 

  46. Asenbaum S, Zeithofer J, Saletu B, Frey R, Brucke T, Podreka I, et al. Technetium-99m-HMPAO SPECT imaging of cerebral blood flow during REM sleep in narcoleptics. J Nucl Med. 1995;36(7):1150–5. PubMed eng.

    PubMed  CAS  Google Scholar 

  47. Maquet P. Functional neuroimaging of normal human sleep by positron emission tomography. J Sleep Res. 2000;9(3):207–31. PubMed.

    Article  PubMed  CAS  Google Scholar 

  48. Joo YE, Hong SB, Tae WS, Kim JH, Han SJ, Cho YW, et al. Cerebral perfusion abnormality in narcolepsy with cataplexy. Neuroimage. 2005;28(2):410–6. PubMed.

    Article  PubMed  Google Scholar 

  49. Joo EY, Tae WS, Kim JH, Kim BT, Hong SB. Glucose hypometabolism of hypothalamus and thalamus in narcolepsy. Ann Neurol. 2004;56(3):437–40. PubMed.

    Article  PubMed  CAS  Google Scholar 

  50. Dauvilliers Y, Comte F, Bayard S, Carlander B, Zanca M, Touchon J. A brain PET study in patients with narcolepsy-cataplexy. J Neurol Neurosurg Psychiatry. 2010;81(3):344–8. PubMed Epub 2009/10/24. eng.

    Article  PubMed  Google Scholar 

  51. Hong SB, Tae WS, Joo EY. Cerebral perfusion changes during cataplexy in narcolepsy patients. Neurology. 2006;66(11):1747–9. PubMed.

    Article  PubMed  Google Scholar 

  52. Chabas D, Habert MO, Maksud P, Tourbah A, Minz M, Willer JC, et al. Functional imaging of cataplexy during status cataplecticus. Sleep. 2007;30(2):153–6. PubMed eng.

    PubMed  Google Scholar 

  53. Reiss AL, Hoeft F, Tenforde AS, Chen W, Mobbs D, Mignot EJ. Anomalous hypothalamic responses to humor in cataplexy. PLoS One. 2008;3(5):e2225. PubMed eng.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schwartz S, Ponz A, Poryazova R, Werth E, Boesiger P, Khatami R, et al. Abnormal activity in hypothalamus and amygdala during humour processing in human narcolepsy with cataplexy. Brain. 2008;131(Pt 2):514–22. PubMed.

    Article  PubMed  Google Scholar 

  55. Schultz W. Multiple reward signals in the brain. Nat Rev Neurosci. 2000;1(3):199–207. PubMed.

    Article  PubMed  CAS  Google Scholar 

  56. Harris GC, Wimmer M, Aston-Jones G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature. 2005;437(7058):556–9. PubMed.

    Article  PubMed  CAS  Google Scholar 

  57. Boutrel B, Kenny PJ, Specio SE, Martin-Fardon R, Markou A, Koob GF, et al. Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci U S A. 2005;102(52):19168–73. PubMed Pubmed Central PMCID: 1323172.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Ponz A, Khatami R, Poryazova R, Werth E, Boesiger P, Bassetti CL, et al. Abnormal activity in reward brain circuits in human narcolepsy with cataplexy. Ann Neurol. 2010;67(2):190–200. PubMed Epub 2010/03/13. eng.

    Article  PubMed  Google Scholar 

  59. Ponz A, Khatami R, Poryazova R, Werth E, Boesiger P, Schwartz S, et al. Reduced amygdala activity during aversive conditioning in human narcolepsy. Ann Neurol. 2010;67(3):394–8. PubMed Epub 2010/04/08. eng.

    PubMed  Google Scholar 

  60. Steriade M, McCarley RW. Brainstem Control of Wakefulness and Sleep. New York: Plenum Press; 1990.

    Book  Google Scholar 

  61. Hobson JA, McCarley RW, Wyzinski PW. Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science. 1975;189(4196):55–8. PubMed.

    Article  PubMed  CAS  Google Scholar 

  62. Sudo Y, Suhara T, Honda Y, Nakajima T, Okubo Y, Suzuki K, et al. Muscarinic cholinergic receptors in human narcolepsy: a PET study. Neurology. 1998;51(5):1297–302. PubMed.

    Article  PubMed  CAS  Google Scholar 

  63. Portas CM, McCarley RW. Behavioral state-related changes of extracellular serotonin concentration in the dorsal raphe nucleus: a microdialysis study in the freely moving cat. Brain Res. 1994;648(2):306–12. PubMed.

    Article  PubMed  CAS  Google Scholar 

  64. Derry C, Benjamin C, Bladin P, le Bars D, Tochon-Danguy H, Berkovic SF, et al. Increased serotonin receptor availability in human sleep: evidence from an [18F]MPPF PET study in narcolepsy. NeuroImage. 2006;30(2):341–8. PubMed Epub 2005/11/09. eng.

    Article  PubMed  Google Scholar 

  65. Aldrich MS, Hollingsworth Z, Penney JB. Dopamine-receptor autoradiography of human narcoleptic brain. Neurology. 1992;42(2):410–5. PubMed.

    Article  PubMed  CAS  Google Scholar 

  66. Kish SJ, Mamelak M, Slimovitch C, Dixon LM, Lewis A, Shannak K, et al. Brain neurotransmitter changes in human narcolepsy. Neurology. 1992;42(1):229–34. PubMed.

    Article  PubMed  CAS  Google Scholar 

  67. Eisensehr I, Linke R, Tatsch K, von Lindeiner H, Kharraz B, Gildehaus FJ, et al. Alteration of the striatal dopaminergic system in human narcolepsy. Neurology. 2003;60(11):1817–9. PubMed.

    Article  PubMed  CAS  Google Scholar 

  68. Rinne JO, Hublin C, Partinen M, Ruottinen H, Nagren K, Lehikoinen P, et al. Striatal dopamine D1 receptors in narcolepsy: a PET study with [11C]NNC 756. J Sleep Res. 1996;5(4):262–4. PubMed.

    Article  PubMed  CAS  Google Scholar 

  69. Rinne JO, Hublin C, Nagren K, Helenius H, Partinen M. Unchanged striatal dopamine transporter availability in narcolepsy: a PET study with [11C]-CFT. Acta Neurol Scand. 2004;109(1):52–5. PubMed.

    Article  PubMed  CAS  Google Scholar 

  70. Staedt J, Stoppe G, Kogler A, Riemann H, Hajak G, Rodenbeck A, et al. [123I]IBZM SPET analysis of dopamine D2 receptor occupancy in narcoleptic patients in the course of treatment. Biol Psychiatry. 1996;39(2):107–11. PubMed.

    Article  PubMed  CAS  Google Scholar 

  71. Hublin C, Launes J, Nikkinen P, Partinen M. Dopamine D2-receptors in human narcolepsy: a SPECT study with 123I-IBZM. Acta Neurol Scand. 1994;90(3):186–9. PubMed.

    Article  PubMed  CAS  Google Scholar 

  72. Khan N, Antonini A, Parkes D, Dahlitz MJ, Meier-Ewert K, Weindl A, et al. Striatal dopamine D2 receptors in patients with narcolepsy measured with PET and 11C-raclopride. Neurology. 1994;44(11):2102–4. PubMed.

    Article  PubMed  CAS  Google Scholar 

  73. MacFarlane JG, List SJ, Moldofsky H, Firnau G, Chen JJ, Szechtman H, et al. Dopamine D2 receptors quantified in vivo in human narcolepsy. Biol Psychiatry. 1997;41(3):305–10. PubMed eng.

    Article  PubMed  CAS  Google Scholar 

  74. Dang-Vu TT, Desseilles M, Schwartz S, Maquet P. Neuroimaging of narcolepsy. CNS Neurol Disord Drug Targets. 2009;8(4):254–63.

    Article  PubMed  CAS  Google Scholar 

  75. Wang C, Wilson CM, Moseley CK, Carlin SM, Hsu S, Arabasz G, et al. Evaluation of potential PET imaging probes for the orexin 2 receptors. Nucl Med Biol. 2013;40(8):1000–5. PubMed Pubmed Central PMCID: 3812298.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thien Thanh Dang-Vu MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

O’Byrne, J.N., Salimi, A., Dang-Vu, T.T. (2016). Neuroimaging of Narcolepsy. In: Goswami, M., Thorpy, M., Pandi-Perumal, S. (eds) Narcolepsy. Springer, Cham. https://doi.org/10.1007/978-3-319-23739-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23739-8_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23738-1

  • Online ISBN: 978-3-319-23739-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics