Skip to main content

The Way Forward: Translation

  • Chapter
Advances in Geroscience

Abstract

Chronological age is the largest risk factor for most of the age-related diseases that account for the bulk of morbidity, mortality, and health costs in developing and developed countries. These disorders, including dementias, atherosclerosis, diabetes, cancers, and arthritis among many others, share predisposing pathogenic mechanisms with processes associated with aging, including low-grade “sterile” inflammation, cellular senescence, accumulation of damaged macromolecules, and stem and progenitor cell dysfunction. These processes are the targets of many of the genetic, environmental, and pharmacological interventions that appear to be effective in extending lifespan in lower mammals. Early indications suggest these interventions may also impact healthspan and resilience, and delay age-related disorders in animal models. Because fundamental aging mechanisms are frequently conserved across a wide range of species, these interventions may be translatable into clinical treatments to prevent, delay, alleviate, or reverse a range of age-related chronic disorders in humans. A great deal of effort to complete the preclinical, clinical proof-of-concept, and formal clinical trials acceptable to regulatory agencies will be required for this to be achieved. Here, we consider some of the interventions that hold promise, the process of translating them into clinical applications, potential clinical conditions for which agents that target fundamental aging mechanisms may be first tested, personnel and resources needed to do so, and regulatory and intellectual property issues in developing feasible interventions. Although the path to clinical application of agents that target fundamental aging mechanisms will likely be difficult, tortuous, and possibly lengthy, the potential to transform health care as we know it is unparalleled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Research AfA (2012) The Silver Book: chronic disease and medical innovation in an aging nation. Washington, DC

    Google Scholar 

  2. Goldman DP, Cutler D, Rowe JW, Michaud PC, Sullivan J, Peneva D, Olshansky SJ (2013) Substantial health and economic returns from delayed aging may warrant a new focus for medical research. Health Aff (Millwood) 32(10):1698–1705. doi:10.1377/hlthaff.2013.0052

    Google Scholar 

  3. Kirkland JL (2013) Translating advances from the basic biology of aging into clinical application. Exp Gerontol 48(1):1–5

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Kirkland JL (2013) Inflammation and cellular senescence: potential contribution to chronic diseases and disabilities with aging. Public Policy Aging Rep 23:12–15

    Google Scholar 

  5. Olshansky SJ, Carnes BA, Cassel C (1990) In search of Methuselah: estimating the upper limits to human longevity. Science 250(4981):634–640

    CAS  PubMed  Google Scholar 

  6. Fried LP, Xue QL, Cappola AR, Ferrucci L, Chaves P, Varadhan R, Guralnik JM, Leng SX, Semba RD, Walston JD, Blaum CS, Bandeen-Roche K (2009) Nonlinear multisystem physiological dysregulation associated with frailty in older women: implications for etiology and treatment. J Gerontol A Biol Sci Med Sci 64(10):1049–1057

    PubMed  Google Scholar 

  7. Bartke A (2011) Single-gene mutations and healthy ageing in mammals. Philos Trans R Soc Lond B Biol Sci 366(1561):28–34

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Lipton RB, Hirsch J, Katz MJ, Wang C, Sanders AE, Verghese J, Barzilai N, Derby CA (2010) Exceptional parental longevity associated with lower risk of Alzheimer’s disease and memory decline. J Am Geriatr Soc 58(6):1043–1049

    PubMed Central  PubMed  Google Scholar 

  9. Kirkland JL, Tchkonia T (2014) Clinical strategies and animal models for developing senolytic agents. Exp Gerontol. doi:10.1016/j.exger.2014.10.012

    PubMed  Google Scholar 

  10. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460(7253):392–395

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, Gomes AP, Ward TM, Minor RK, Blouin MJ, Schwab M, Pollak M, Zhang Y, Yu Y, Becker KG, Bohr VA, Ingram DK, Sinclair DA, Wolf NS, Spindler SR, Bernier M, de Cabo R (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4:2192. doi:10.1038/ncomms3192

    PubMed Central  PubMed  Google Scholar 

  12. Harrison DE, Strong R, Allison DB, Ames BN, Astle CM, Atamna H, Fernandez E, Flurkey K, Javors MA, Nadon NL, Nelson JF, Pletcher S, Simpkins JW, Smith D, Wilkinson JE, Miller RA (2014) Acarbose, 17-alpha-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 13(2):273–282. doi:10.1111/acel.12170

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Zhu Y, Tchkonia T, Pirtskhalava T, Gower A, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Borden G, Lenburg M, O’Hara SP, LaRusso NF, Miller JD, Roos CM, Verzosa GC, LeBrasseur NK, Wren JD, Farr JN, Khosla S, Stout MB, McGowan SJ, Fuhrmann-Stroissnigg H, Gurkar AU, Zhao J, Colangelo D, Dorronsoro A, Ling YY, Barghouthy AS, Navarro DC, Sano T, Robbins PD, Niedernhofer LJ, Kirkland JL (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. doi:10.1111/acel.12344

    Google Scholar 

  14. Majumder S, Caccamo A, Medina DX, Benavides AD, Javors MA, Kraig E, Strong R, Richardson A, Oddo S (2012) Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1beta and enhancing NMDA signaling. Aging Cell 11(2):326–335

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Anderson RM, Weindruch R (2012) The caloric restriction paradigm: implications for healthy human aging. Am J Hum Biol 24(2):101–106

    PubMed Central  PubMed  Google Scholar 

  16. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764

    CAS  PubMed  Google Scholar 

  17. Lavasani M, Robinson AR, Lu A, Song M, Feduska JM, Ahani B, Tilstra JS, Feldman CH, Robbins PD, Niedernhofer LJ, Huard J (2012) Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model. Nat Commun 3:608

    PubMed Central  PubMed  Google Scholar 

  18. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL (2013) Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 123(3):966–972

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Li J, Kim SG, Blenis J (2014) Rapamycin: one drug, many effects. Cell Metab 19(3):373–379. doi:10.1016/j.cmet.2014.01.001

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Lamming DW, Ye L, Sabatini DM, Baur JA (2013) Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest 123(3):980–989. doi:10.1172/JCI64099

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Kennedy BK, Pennypacker JK (2014) Drugs that modulate aging: the promising yet difficult path ahead. Transl Res 163(5):456–465. doi:10.1016/j.trsl.2013.11.007

    PubMed Central  PubMed  Google Scholar 

  23. Wilkinson JE, Burmeister L, Brooks SV, Chan CC, Friedline S, Harrison DE, Hejtmancik JF, Nadon N, Strong R, Wood LK, Woodward MA, Miller RA (2012) Rapamycin slows aging in mice. Aging Cell 11(4):675–682. doi:10.1111/j.1474-9726.2012.00832.x

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Richardson A, Galvan V, Lin AL, Oddo S (2014) How longevity research can lead to therapies for Alzheimer’s disease: the rapamycin story. Exp Gerontol. doi:10.1016/j.exger.2014.12.002

    Google Scholar 

  25. Mannick JB, Del Giudice G, Lattanzi M, Valiante NM, Praestgaard J, Huang B, Lonetto MA, Maecker HT, Kovarik J, Carson S, Glass DJ, Klickstein LB (2014) mTOR inhibition improves immune function in the elderly. Sci Transl Med 6(268):268ra179. doi:10.1126/scitranslmed.3009892

    PubMed  Google Scholar 

  26. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346(6):393–403. doi:10.1056/NEJMoa012512

    CAS  PubMed  Google Scholar 

  27. Crandall J, Schade D, Ma Y, Fujimoto WY, Barrett-Connor E, Fowler S, Dagogo-Jack S, Andres R (2006) The influence of age on the effects of lifestyle modification and metformin in prevention of diabetes. J Gerontol A Biol Sci Med Sci 61(10):1075–1081

    PubMed Central  PubMed  Google Scholar 

  28. Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, Tyndyk ML, Yurova MV, Kovalenko IG, Poroshina TE, Semenchenko AV (2008) Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 7(17):2769–2773

    CAS  PubMed  Google Scholar 

  29. Anisimov VN, Berstein LM, Popovich IG, Zabezhinski MA, Egormin PA, Piskunova TS, Semenchenko AV, Tyndyk ML, Yurova MN, Kovalenko IG, Poroshina TE (2011) If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice. Aging (Milano) 3(2):148–157

    CAS  Google Scholar 

  30. Anisimov VN, Egormin PA, Piskunova TS, Popovich IG, Tyndyk ML, Yurova MN, Zabezhinski MA, Anikin IV, Karkach AS, Romanyukha AA (2010) Metformin extends life span of HER-2/neu transgenic mice and in combination with melatonin inhibits growth of transplantable tumors in vivo. Cell Cycle 9(1):188–197

    CAS  PubMed  Google Scholar 

  31. Smith DL Jr, Elam CF Jr, Mattison JA, Lane MA, Roth GS, Ingram DK, Allison DB (2010) Metformin supplementation and life span in Fischer-344 rats. J Gerontol A Biol Sci Med Sci 65(5):468–474. doi:10.1093/gerona/glq033

    PubMed  Google Scholar 

  32. Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cocheme HM, Noori T, Weinkove D, Schuster E, Greene ND, Gems D (2013) Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153(1):228–239. doi:10.1016/j.cell.2013.02.035

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Baur JA, Birnbaum MJ (2014) Control of gluconeogenesis by metformin: does redox trump energy charge? Cell Metab 20(2):197–199. doi:10.1016/j.cmet.2014.07.013

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, Jurczak MJ, Camporez JP, Lee HY, Cline GW, Samuel VT, Kibbey RG, Shulman GI (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510(7506):542–546. doi:10.1038/nature13270

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Moiseeva O, Deschenes-Simard X, St-Germain E, Igelmann S, Huot G, Cadar AE, Bourdeau V, Pollak MN, Ferbeyre G (2013) Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-kappaB activation. Aging Cell 12(3):489–498. doi:10.1111/acel.12075

    CAS  PubMed  Google Scholar 

  36. Anfossi G, Russo I, Bonomo K, Trovati M (2010) The cardiovascular effects of metformin: further reasons to consider an old drug as a cornerstone in the therapy of type 2 diabetes mellitus. Curr Vasc Pharmacol 8(3):327–337

    CAS  PubMed  Google Scholar 

  37. Hong J, Zhang Y, Lai S, Lv A, Su Q, Dong Y, Zhou Z, Tang W, Zhao J, Cui L, Zou D, Wang D, Li H, Liu C, Wu G, Shen J, Zhu D, Wang W, Shen W, Ning G (2013) Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care 36(5):1304–1311. doi:10.2337/dc12-0719

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Johnson JA, Simpson SH, Toth EL, Majumdar SR (2005) Reduced cardiovascular morbidity and mortality associated with metformin use in subjects with Type 2 diabetes. Diabet Med 22(4):497–502. doi:10.1111/j.1464-5491.2005.01448.x

    CAS  PubMed  Google Scholar 

  39. Lamanna C, Monami M, Marchionni N, Mannucci E (2011) Effect of metformin on cardiovascular events and mortality: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 13(3):221–228. doi:10.1111/j.1463-1326.2010.01349.x

    CAS  PubMed  Google Scholar 

  40. Roumie CL, Hung AM, Greevy RA, Grijalva CG, Liu X, Murff HJ, Elasy TA, Griffin MR (2012) Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes mellitus: a cohort study. Ann Intern Med 157(9):601–610. doi:10.7326/0003-4819-157-9-201211060-00003

    PubMed  Google Scholar 

  41. Whittington HJ, Hall AR, McLaughlin CP, Hausenloy DJ, Yellon DM, Mocanu MM (2013) Chronic metformin associated cardioprotection against infarction: not just a glucose lowering phenomenon. Cardiovasc Drugs Ther 27(1):5–16. doi:10.1007/s10557-012-6425-x

    CAS  PubMed  Google Scholar 

  42. Anisimov VN, Bartke A (2013) The key role of growth hormone-insulin-IGF-1 signaling in aging and cancer. Crit Rev Oncol Hematol 87(3):201–223. doi:10.1016/j.critrevonc.2013.01.005

    PubMed Central  PubMed  Google Scholar 

  43. Karnevi E, Said K, Andersson R, Rosendahl AH (2013) Metformin-mediated growth inhibition involves suppression of the IGF-I receptor signalling pathway in human pancreatic cancer cells. BMC Cancer 13:235. doi:10.1186/1471-2407-13-235

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Liu B, Fan Z, Edgerton SM, Yang X, Lind SE, Thor AD (2011) Potent anti-proliferative effects of metformin on trastuzumab-resistant breast cancer cells via inhibition of erbB2/IGF-1 receptor interactions. Cell Cycle 10(17):2959–2966

    CAS  PubMed  Google Scholar 

  45. Quinn BJ, Dallos M, Kitagawa H, Kunnumakkara AB, Memmott RM, Hollander MC, Gills JJ, Dennis PA (2013) Inhibition of lung tumorigenesis by metformin is associated with decreased plasma IGF-I and diminished receptor tyrosine kinase signaling. Cancer Prev Res (Phila) 6(8):801–810. doi:10.1158/1940-6207.CAPR-13-0058-T

    CAS  Google Scholar 

  46. Salani B, Maffioli S, Hamoudane M, Parodi A, Ravera S, Passalacqua M, Alama A, Nhiri M, Cordera R, Maggi D (2012) Caveolin-1 is essential for metformin inhibitory effect on IGF1 action in non-small-cell lung cancer cells. FASEB J 26(2):788–798. doi:10.1096/fj.11-192088

    CAS  PubMed  Google Scholar 

  47. Seibel SA, Chou KH, Capp E, Spritzer PM, von Eye CH (2008) Effect of metformin on IGF-1 and IGFBP-1 levels in obese patients with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 138(1):122–124. doi:10.1016/j.ejogrb.2007.02.001

    CAS  PubMed  Google Scholar 

  48. Tosca L, Rame C, Chabrolle C, Tesseraud S, Dupont J (2010) Metformin decreases IGF1-induced cell proliferation and protein synthesis through AMP-activated protein kinase in cultured bovine granulosa cells. Reproduction 139(2):409–418. doi:10.1530/REP-09-0351

    CAS  PubMed  Google Scholar 

  49. Landman GW, Kleefstra N, van Hateren KJ, Groenier KH, Gans RO, Bilo HJ (2010) Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care 33(2):322–326. doi:10.2337/dc09-1380

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Lee MS, Hsu CC, Wahlqvist ML, Tsai HN, Chang YH, Huang YC (2011) Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals. BMC Cancer 11:20. doi:10.1186/1471-2407-11-20

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM (2009) New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care 32(9):1620–1625. doi:10.2337/dc08-2175

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Monami M, Colombi C, Balzi D, Dicembrini I, Giannini S, Melani C, Vitale V, Romano D, Barchielli A, Marchionni N, Rotella CM, Mannucci E (2011) Metformin and cancer occurrence in insulin-treated type 2 diabetic patients. Diabetes Care 34(1):129–131. doi:10.2337/dc10-1287

    PubMed Central  PubMed  Google Scholar 

  53. Tseng CH (2012) Diabetes, metformin use, and colon cancer: a population-based cohort study in Taiwan. Eur J Endocrinol 167(3):409–416. doi:10.1530/EJE-12-0369

    CAS  PubMed  Google Scholar 

  54. Moore EM, Mander AG, Ames D, Kotowicz MA, Carne RP, Brodaty H, Woodward M, Boundy K, Ellis KA, Bush AI, Faux NG, Martins R, Szoeke C, Rowe C, Watters DA (2013) Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care 36(10):2981–2987. doi:10.2337/dc13-0229

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Ng TP, Feng L, Yap KB, Lee TS, Tan CH, Winblad B (2014) Long-term metformin usage and cognitive function among older adults with diabetes. J Alzheimers Dis 41(1):61–68. doi:10.3233/JAD-131901

    CAS  PubMed  Google Scholar 

  56. Bannister CA, Holden SE, Jenkins-Jones S, Morgan CL, Halcox JP, Schernthaner G, Mukherjee J, Currie CJ (2014) Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes Metab 16(11):1165–1173. doi:10.1111/dom.12354

    CAS  PubMed  Google Scholar 

  57. Frantz S, Calvillo L, Tillmanns J, Elbing I, Dienesch C, Bischoff H, Ertl G, Bauersachs J (2005) Repetitive postprandial hyperglycemia increases cardiac ischemia/reperfusion injury: prevention by the alpha-glucosidase inhibitor acarbose. FASEB J 19(6):591–593. doi:10.1096/fj.04-2459fje

    CAS  PubMed  Google Scholar 

  58. Miyamura M, Schnell O, Yamashita C, Yoshioka T, Matsumoto C, Mori T, Ukimura A, Kitaura Y, Matsumura Y, Ishizaka N, Hayashi T (2010) Effects of acarbose on the acceleration of postprandial hyperglycemia-induced pathological changes induced by intermittent hypoxia in lean mice. J Pharmacol Sci 114(1):32–40

    CAS  PubMed  Google Scholar 

  59. Balfour JA, McTavish D (1993) Acarbose. An update of its pharmacology and therapeutic use in diabetes mellitus. Drugs 46(6):1025–1054

    CAS  PubMed  Google Scholar 

  60. Archer VE (2003) Does dietary sugar and fat influence longevity? Med Hypotheses 60(6):924–929

    CAS  PubMed  Google Scholar 

  61. Yamamoto M, Otsuki M (2006) Effect of inhibition of alpha-glucosidase on age-related glucose intolerance and pancreatic atrophy in rats. Metabolism 55(4):533–540. doi:10.1016/j.metabol.2005.11.007

    CAS  PubMed  Google Scholar 

  62. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M (2002) Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 359(9323):2072–2077. doi:10.1016/S0140-6736(02)08905-5

    CAS  PubMed  Google Scholar 

  63. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M (2003) Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. J Am Med Assoc 290(4):486–494. doi:10.1001/jama.290.4.486

    CAS  Google Scholar 

  64. Zeymer U, Schwarzmaier-D’assie A, Petzinna D, Chiasson JL (2004) Effect of acarbose treatment on the risk of silent myocardial infarctions in patients with impaired glucose tolerance: results of the randomised STOP-NIDDM trial electrocardiography substudy. Eur J Cardiovasc Prev Rehabil 11(5):412–415

    PubMed  Google Scholar 

  65. Dey M, Lyttle CR, Pickar JH (2000) Recent insights into the varying activity of estrogens. Maturitas 34(Suppl 2):S25–S33

    CAS  PubMed  Google Scholar 

  66. Dykens JA, Moos WH, Howell N (2005) Development of 17alpha-estradiol as a neuroprotective therapeutic agent: rationale and results from a phase I clinical study. Ann N Y Acad Sci 1052:116–135. doi:10.1196/annals.1347.008

    CAS  PubMed  Google Scholar 

  67. Littlefield BA, Gurpide E, Markiewicz L, McKinley B, Hochberg RB (1990) A simple and sensitive microtiter plate estrogen bioassay based on stimulation of alkaline phosphatase in Ishikawa cells: estrogenic action of delta 5 adrenal steroids. Endocrinology 127(6):2757–2762. doi:10.1210/endo-127-6-2757

    CAS  PubMed  Google Scholar 

  68. Toran-Allerand CD (2004) Minireview: A plethora of estrogen receptors in the brain: where will it end? Endocrinology 145(3):1069–1074. doi:10.1210/en.2003-1462

    CAS  PubMed  Google Scholar 

  69. Orfanos CE, Vogels L (1980) Local therapy of androgenetic alopecia with 17 alpha-estradiol. A controlled, randomized double-blind study (author’s transl). Dermatologica 161(2):124–132

    CAS  PubMed  Google Scholar 

  70. Jones DL, Rando TA (2011) Emerging models and paradigms for stem cell ageing. Nat Cell Biol 13(5):506–512. doi:10.1038/ncb0511-506

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Gimble JM, Nuttall ME (2012) The relationship between adipose tissue and bone metabolism. Clin Biochem 45(12):874–879. doi:10.1016/j.clinbiochem.2012.03.006

    CAS  PubMed  Google Scholar 

  72. Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, Miller C, Regalado SG, Loffredo FS, Pancoast JR, Hirshman MF, Lebowitz J, Shadrach JL, Cerletti M, Kim MJ, Serwold T, Goodyear LJ, Rosner B, Lee RT, Wagers AJ (2014) Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344(6184):649–652. doi:10.1126/science.1251152

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, Chen JW, Lee RT, Wagers AJ, Rubin LL (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344(6184):630–634. doi:10.1126/science.1251141

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Coppé JP, Patil C, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    PubMed  Google Scholar 

  75. Kuilman T, Peeper DS (2009) Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 9:81–94

    CAS  PubMed  Google Scholar 

  76. Waaijer ME, Parish WE, Strongitharm BH, van Heemst D, Slagboom PE, de Craen AJ, Sedivy JM, Westendorp RG, Gunn DA, Maier AB (2012) The number of p16INK4a positive cells in human skin reflects biological age. Aging Cell 11:722–725

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Zhu Y, Armstrong JL, Tchkonia T, Kirkland JL (2014) Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr Opin Clin Nutr Metab Care 17(4):324–328. doi:10.1097/MCO.0000000000000065

    CAS  PubMed  Google Scholar 

  79. Stout MB, Tchkonia T, Pirtskhalava T, Palmer AK, List EO, Berryman DE, Lubbers ER, Escande C, Spong A, Masternak MM, Oberg AL, LeBrasseur NK, Miller RA, Kopchick JJ, Bartke A, Kirkland JL (2014) Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging (Milano)

    Google Scholar 

  80. Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, Sharpless NE (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114(9):1299–1307

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Tchkonia T, Morbeck DE, von Zglinicki T, van Deursen J, Lustgarten J, Scrable H, Khosla S, Jensen MD, Kirkland JL (2010) Fat tissue, aging, and cellular senescence. Aging Cell 9:667–684

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, Nojima A, Nabetani A, Oike Y, Matsubara H, Ishikawa F, Komuro I (2009) A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 15(9):1082–1087

    CAS  PubMed  Google Scholar 

  83. Eren M, Boe AE, Murphy SB, Place AT, Nagpal V, Morales-Nebreda L, Urich D, Quaggin SE, Budinger GR, Mutlu GM, Miyata T, Vaughan DE (2014) PAI-1-regulated extracellular proteolysis governs senescence and survival in Klotho mice. Proc Natl Acad Sci U S A 111(19):7090–7095. doi:10.1073/pnas.1321942111

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Chen Q, Liu K, Robinson AR, Clauson CL, Blair HC, Robbins PD, Niedernhofer LJ, Ouyang H (2013) DNA damage drives accelerated bone aging via an NF-kappaB-dependent mechanism. J Bone Miner Res 28(5):1214–1228

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Baker DJ, Perez-Terzic C, Jin F, Pitel KS, Niederlander NJ, Jeganathan K, Yamada S, Reyes S, Rowe L, Hiddinga HJ, Eberhardt NL, Terzic A, van Deursen JM (2008) Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat Cell Biol 10(7):825–836. doi:10.1038/ncb1744

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, Saretzki G, Fox C, Lawless C, Anderson R, Hewitt G, Pender SL, Fullard N, Nelson G, Mann J, van de Sluis B, Mann DA, von Zglinicki T (2014) Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun 2:4172. doi:10.1038/ncomms5172

    PubMed Central  PubMed  Google Scholar 

  87. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dolle ME, Hoeijmakers JH, de Bruin A, Hara E, Campisi J (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31(6):722–733. doi:10.1016/j.devcel.2014.11.012

    CAS  PubMed  Google Scholar 

  88. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445(7128):656–660

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Min TZ, Stephens MW, Kumar P, Chudleigh RA (2012) Renal complications of diabetes. Br Med Bull 104:113–127. doi:10.1093/bmb/lds030

    CAS  PubMed  Google Scholar 

  91. Pasternak B, Svanstrom H, Callreus T, Melbye M, Hviid A (2011) Use of angiotensin receptor blockers and the risk of cancer. Circulation 123(16):1729–1736. doi:10.1161/CIRCULATIONAHA.110.007336

    CAS  PubMed  Google Scholar 

  92. Huang CC, Chan WL, Chen YC, Chen TJ, Lin SJ, Chen JW, Leu HB (2011) Angiotensin II receptor blockers and risk of cancer in patients with systemic hypertension. Am J Cardiol 107(7):1028–1033. doi:10.1016/j.amjcard.2010.11.026

    CAS  PubMed  Google Scholar 

  93. Hanon O, Berrou JP, Negre-Pages L, Goch JH, Nadhazi Z, Petrella R, Sedefdjian A, Sevenier F, Shlyakhto EV, Pathak A (2008) Effects of hypertension therapy based on eprosartan on systolic arterial blood pressure and cognitive function: primary results of the Observational Study on Cognitive function and Systolic Blood Pressure Reduction open-label study. J Hypertens 26(8):1642–1650. doi:10.1097/HJH.0b013e328301a280

    CAS  PubMed  Google Scholar 

  94. Davies NM, Kehoe PG, Ben-Shlomo Y, Martin RM (2011) Associations of anti-hypertensive treatments with Alzheimer’s disease, vascular dementia, and other dementias. J Alzheimers Dis 26(4):699–708. doi:10.3233/JAD-2011-110347

    PubMed  Google Scholar 

  95. Li NC, Lee A, Whitmer RA, Kivipelto M, Lawler E, Kazis LE, Wolozin B (2010) Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ 340:b5465. doi:10.1136/bmj.b5465

    PubMed Central  PubMed  Google Scholar 

  96. Benigni A, Orisio S, Noris M, Iatropoulos P, Castaldi D, Kamide K, Rakugi H, Arai Y, Todeschini M, Ogliari G, Imai E, Gondo Y, Hirose N, Mari D, Remuzzi G (2013) Variations of the angiotensin II type 1 receptor gene are associated with extreme human longevity. Age 35(3):993–1005. doi:10.1007/s11357-012-9408-8

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M, Conti S, Rottoli D, Longaretti L, Cassis P, Morigi M, Coffman TM, Remuzzi G (2009) Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest 119(3):524–530. doi:10.1172/JCI36703

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Linz W, Heitsch H, Scholkens BA, Wiemer G (2000) Long-term angiotensin II type 1 receptor blockade with fonsartan doubles lifespan of hypertensive rats. Hypertension 35(4):908–913

    CAS  PubMed  Google Scholar 

  99. Linz W, Jessen T, Becker RH, Scholkens BA, Wiemer G (1997) Long-term ACE inhibition doubles lifespan of hypertensive rats. Circulation 96(9):3164–3172

    CAS  PubMed  Google Scholar 

  100. Santos EL, de Picoli SK, da Silva ED, Batista EC, Martins PJ, D’Almeida V, Pesquero JB (2009) Long term treatment with ACE inhibitor enalapril decreases body weight gain and increases life span in rats. Biochem Pharmacol 78(8):951–958. doi:10.1016/j.bcp.2009.06.018

    CAS  PubMed  Google Scholar 

  101. Ferder L, Inserra F, Romano L, Ercole L, Pszenny V (1993) Effects of angiotensin-converting enzyme inhibition on mitochondrial number in the aging mouse. Am J Physiol 265(1 Pt 1):C15–C18

    CAS  PubMed  Google Scholar 

  102. Basso N, Cini R, Pietrelli A, Ferder L, Terragno NA, Inserra F (2007) Protective effect of long-term angiotensin II inhibition. Am J Physiol Heart Circ Physiol 293(3):H1351–H1358. doi:10.1152/ajpheart.00393.2007

    CAS  PubMed  Google Scholar 

  103. Basso N, Paglia N, Stella I, de Cavanagh EM, Ferder L, del Rosario Lores Arnaiz M, Inserra F (2005) Protective effect of the inhibition of the renin-angiotensin system on aging. Regul Pept 128(3):247–252. doi:10.1016/j.regpep.2004.12.027

    CAS  PubMed  Google Scholar 

  104. Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvari M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ, Vazquez-Manrique RP, Orfila AM, Ackerman D, Au C, Vinti G, Riesen M, Howard K, Neri C, Bedalov A, Kaeberlein M, Soti C, Partridge L, Gems D (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477(7365):482–485. doi:10.1038/nature10296

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13(19):2570–2580

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101(45):15998–16003. doi:10.1073/pnas.0404184101

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Viswanathan M, Guarente L (2011) Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 477(7365):E1–E2. doi:10.1038/nature10440

    CAS  PubMed  Google Scholar 

  108. Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483(7388):218–221. doi:10.1038/nature10815

    CAS  PubMed  Google Scholar 

  109. Guarente L (2011) Franklin H. Epstein Lecture: Sirtuins, aging, and medicine. N Engl J Med 364(23):2235–2244. doi:10.1056/NEJMra1100831

    CAS  PubMed  Google Scholar 

  110. Herranz D, Munoz-Martin M, Canamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O, Serrano M (2010) Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 1:3. doi:10.1038/ncomms1001

    PubMed Central  PubMed  Google Scholar 

  111. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196. doi:10.1038/nature01960

    CAS  PubMed  Google Scholar 

  112. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430(7000):686–689. doi:10.1038/nature02789

    CAS  PubMed  Google Scholar 

  113. Strong R, Miller RA, Astle CM, Baur JA, de Cabo R, Fernandez E, Guo W, Javors M, Kirkland JL, Nelson JF, Sinclair DA, Teter B, Williams D, Zaveri N, Nadon NL, Harrison DE (2013) Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 68(1):6–16. doi:10.1093/gerona/gls070

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Mitchell SJ, Martin-Montalvo A, Mercken EM, Palacios HH, Ward TM, Abulwerdi G, Minor RK, Vlasuk GP, Ellis JL, Sinclair DA, Dawson J, Allison DB, Zhang Y, Becker KG, Bernier M, de Cabo R (2014) The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep 6(5):836–843. doi:10.1016/j.celrep.2014.01.031

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Mercken EM, Mitchell SJ, Martin-Montalvo A, Minor RK, Almeida M, Gomes AP, Scheibye-Knudsen M, Palacios HH, Licata JJ, Zhang Y, Becker KG, Khraiwesh H, Gonzalez-Reyes JA, Villalba JM, Baur JA, Elliott P, Westphal C, Vlasuk GP, Ellis JL, Sinclair DA, Bernier M, de Cabo R (2014) SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell 13(5):787–796. doi:10.1111/acel.12220

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117):337–342. doi:10.1038/nature05354

    CAS  PubMed  Google Scholar 

  117. Minor RK, Baur JA, Gomes AP, Ward TM, Csiszar A, Mercken EM, Abdelmohsen K, Shin YK, Canto C, Scheibye-Knudsen M, Krawczyk M, Irusta PM, Martin-Montalvo A, Hubbard BP, Zhang Y, Lehrmann E, White AA, Price NL, Swindell WR, Pearson KJ, Becker KG, Bohr VA, Gorospe M, Egan JM, Talan MI, Auwerx J, Westphal CH, Ellis JL, Ungvari Z, Vlasuk GP, Elliott PJ, Sinclair DA, de Cabo R (2011) SRT1720 improves survival and healthspan of obese mice. Sci Rep 1:70. doi:10.1038/srep00070

    PubMed Central  PubMed  Google Scholar 

  118. Jimenez-Gomez Y, Mattison JA, Pearson KJ, Martin-Montalvo A, Palacios HH, Sossong AM, Ward TM, Younts CM, Lewis K, Allard JS, Longo DL, Belman JP, Malagon MM, Navas P, Sanghvi M, Moaddel R, Tilmont EM, Herbert RL, Morrell CH, Egan JM, Baur JA, Ferrucci L, Bogan JS, Bernier M, de Cabo R (2013) Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. Cell Metab 18(4):533–545. doi:10.1016/j.cmet.2013.09.004

    CAS  PubMed  Google Scholar 

  119. Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, Hoeks J, van der Krieken S, Ryu D, Kersten S, Moonen-Kornips E, Hesselink MK, Kunz I, Schrauwen-Hinderling VB, Blaak EE, Auwerx J, Schrauwen P (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14(5):612–622. doi:10.1016/j.cmet.2011.10.002

    CAS  PubMed  Google Scholar 

  120. Hubbard BP, Sinclair DA (2014) Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci 35(3):146–154. doi:10.1016/j.tips.2013.12.004

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Hausenblas HA, Schoulda JA, Smoliga JM (2014) Resveratrol treatment as an adjunct to pharmacological management in type 2 diabetes mellitus-systematic review and meta-analysis. Mol Nutr Food Res. doi:10.1002/mnfr.201400173

    PubMed  Google Scholar 

  122. de Ligt M, Timmers S, Schrauwen P (2014) Resveratrol and obesity: can resveratrol relieve metabolic disturbances? Biochim Biophys Acta. doi:10.1016/j.bbadis.2014.11.012

    PubMed  Google Scholar 

  123. Escande C, Nin V, Pirtskhalava T, Chini CC, Thereza Barbosa M, Mathison A, Urrutia R, Tchkonia T, Kirkland JL, Chini EN (2014) Deleted in breast cancer 1 regulates cellular senescence during obesity. Aging Cell. doi:10.1111/acel.12235

    PubMed Central  PubMed  Google Scholar 

  124. Burn J, Gerdes AM, Macrae F, Mecklin JP, Moeslein G, Olschwang S, Eccles D, Evans DG, Maher ER, Bertario L, Bisgaard ML, Dunlop MG, Ho JW, Hodgson SV, Lindblom A, Lubinski J, Morrison PJ, Murday V, Ramesar R, Side L, Scott RJ, Thomas HJ, Vasen HF, Barker G, Crawford G, Elliott F, Movahedi M, Pylvanainen K, Wijnen JT, Fodde R, Lynch HT, Mathers JC, Bishop DT (2011) Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet 378(9809):2081–2087. doi:10.1016/S0140-6736(11)61049-0

    PubMed Central  PubMed  Google Scholar 

  125. Chang ET, Froslev T, Sorensen HT, Pedersen L (2011) A nationwide study of aspirin, other non-steroidal anti-inflammatory drugs, and Hodgkin lymphoma risk in Denmark. Br J Cancer 105(11):1776–1782. doi:10.1038/bjc.2011.443

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Flossmann E, Rothwell PM (2007) Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet 369(9573):1603–1613. doi:10.1016/S0140-6736(07)60747-8

    CAS  PubMed  Google Scholar 

  127. Strong R, Miller RA, Astle CM, Floyd RA, Flurkey K, Hensley KL, Javors MA, Leeuwenburgh C, Nelson JF, Ongini E (2008) Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell 7:641–650

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, Peggie MW, Zibrova D, Green KA, Mustard KJ, Kemp BE, Sakamoto K, Steinberg GR, Hardie DG (2012) The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336(6083):918–922. doi:10.1126/science.1215327

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Goldfine AB, Fonseca V, Jablonski KA, Chen YD, Tipton L, Staten MA, Shoelson SE (2013) Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann Intern Med 159(1):1–12. doi:10.7326/0003-4819-159-1-201307020-00003

    PubMed Central  PubMed  Google Scholar 

  130. Din FV, Valanciute A, Houde VP, Zibrova D, Green KA, Sakamoto K, Alessi DR, Dunlop MG (2012) Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology 142(7):1504–1515 e1503. doi:10.1053/j.gastro.2012.02.050

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Wan QL, Zheng SQ, Wu GS, Luo HR (2013) Aspirin extends the lifespan of Caenorhabditis elegans via AMPK and DAF-16/FOXO in dietary restriction pathway. Exp Gerontol 48(5):499–506. doi:10.1016/j.exger.2013.02.020

    CAS  PubMed  Google Scholar 

  132. Pallet N, Legendre C (2013) Adverse events associated with mTOR inhibitors. Expert Opin Drug Saf 12(2):177–186. doi:10.1517/14740338.2013.752814

    CAS  PubMed  Google Scholar 

  133. Verges B, Walter T, Cariou B (2014) Endocrine side effects of anti-cancer drugs: effects of anti-cancer targeted therapies on lipid and glucose metabolism. Eur J Endocrinol 170(2):R43–R55. doi:10.1530/EJE-13-0586

    CAS  PubMed  Google Scholar 

  134. Steinmetz KL, Spack EG (2009) The basics of preclinical drug development for neurodegenerative disease indications. BMC Neurol 9(Suppl 1):S2

    PubMed Central  PubMed  Google Scholar 

  135. Baur JA, Ungvari Z, Minor RK, Le Couteur DG, de Cabo R (2012) Are sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov 11(6):443–461

    CAS  PubMed  Google Scholar 

  136. Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, Davis JG, Salmon AB, Richardson A, Ahima RS, Guertin DA, Sabatini DM, Baur JA (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335(6076):1638–1643

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Calhoun C, Shivshankar P, Saker M, Sloane LB, Livi CB, Sharp ZD, Orihuela CJ, Adnot S, White ES, Richardson A, Jourdan Le Saux C (2015) Senescent cells contribute to the physiological remodeling of aged lungs. J Gerontol A Biol Sci Med Sci. doi:10.1093/gerona/glu241

    PubMed  Google Scholar 

  138. Kanapuru B, Ershler WB (2009) Inflammation, coagulation, and the pathway to frailty. Am J Med 122(7):605–613

    CAS  PubMed  Google Scholar 

  139. Bandeen-Roche K, Walston JD, Huang Y, Semba RD, Ferrucci L (2009) Measuring systemic inflammatory regulation in older adults: evidence and utility. Rejuvenation Res 12(6):403–410

    PubMed Central  PubMed  Google Scholar 

  140. Qu T, Walston JD, Yang H, Fedarko NS, Xue QL, Beamer BA, Ferrucci L, Rose NR, Leng SX (2009) Upregulated ex vivo expression of stress-responsive inflammatory pathway genes by LPS-challenged CD14(+) monocytes in frail older adults. Mech Ageing Dev 130(3):161–166

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Walston JD, Matteini AM, Nievergelt C, Lange LA, Fallin DM, Barzilai N, Ziv E, Pawlikowska L, Kwok P, Cummings SR, Kooperberg C, LaCroix A, Tracy RP, Atzmon G, Lange EM, Reiner AP (2009) Inflammation and stress-related candidate genes, plasma interleukin-6 levels, and longevity in older adults. Exp Gerontol 44(5):350–355

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Leng SX, Xue QL, Tian J, Walston JD, Fried LP (2007) Inflammation and frailty in older women. J Am Geriatr Soc 55(6):864–871

    PubMed  Google Scholar 

  143. Walston J, Hadley E, Ferrucci L, Guralnick JM, Newman AB, Studenski SA, Ershler WB, Harris T, Fried LP (2006) Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American Geriatrics Society/National Institute on Aging research conference on frailty in older adults. J Am Geriatr Soc 54:991–1001

    PubMed  Google Scholar 

  144. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56(3):M146–M156

    CAS  PubMed  Google Scholar 

  145. Walston J, McBurnie MA, Newman A, Tracy RP, Kop WJ, Hirsch CH, Gottdiener J, Fried LP (2002) Frailty and activation of the inflammation and coagulation systems with and without clinical comorbidities: results from the Cardiovascular Health Study. Arch Intern Med 162(20):2333–2341

    PubMed  Google Scholar 

  146. Bandeen-Roche K, Xue QL, Ferrucci L, Walston J, Guralnik JM, Chaves P, Zeger SL, Fried LP (2006) Phenotype of frailty: characterization in the women’s health and aging studies. J Gerontol A Biol Sci Med Sci 61(3):262–266

    PubMed  Google Scholar 

  147. Rockwood K, Mitnitski A, Song X, Steen B, Skoog I (2006) Long-term risks of death and institutionalization of elderly people in relation to deficit accumulation at age 70. J Am Geriatr Soc 54(6):975–979

    PubMed  Google Scholar 

  148. Rockwood K, Mitnitski A (2011) Frailty defined by deficit accumulation and geriatric medicine defined by frailty. Clin Geriatr Med 27(1):17–26

    PubMed  Google Scholar 

  149. Lucicesare A, Hubbard RE, Searle SD, Rockwood K (2010) An index of self-rated health deficits in relation to frailty and adverse outcomes in older adults. Aging Clin Exp Res 22(3):255–260

    PubMed  Google Scholar 

  150. Villareal DT, Chode S, Parimi N, Sinacore DR, Hilton T, Armamento-Villareal R, Napoli N, Qualls C, Shah K (2011) Weight loss, exercise, or both and physical function in obese older adults. N Engl J Med 364(13):1218–1229. doi:10.1056/NEJMoa1008234

    PubMed Central  CAS  PubMed  Google Scholar 

  151. McLean RR, Shardell MD, Alley DE, Cawthon PM, Fragala MS, Harris TB, Kenny AM, Peters KW, Ferrucci L, Guralnik JM, Kritchevsky SB, Kiel DP, Vassileva MT, Xue QL, Perera S, Studenski SA, Dam TT (2014) Criteria for clinically relevant weakness and low lean mass and their longitudinal association with incident mobility impairment and mortality: the foundation for the National Institutes of Health (FNIH) sarcopenia project. J Gerontol A Biol Sci Med Sci 69(5):576–583. doi:10.1093/gerona/glu012

    PubMed Central  PubMed  Google Scholar 

  152. Lee C, Raffaghello L, Brandhorst S, Safdie FM, Bianchi G, Martin-Montalvo A, Pistoia V, Wei M, Hwang S, Merlino A, Emionite L, de Cabo R, Longo VD (2012) Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med 4(124):124ra127

    Google Scholar 

  153. Takasaka N, Araya J, Hara H, Ito S, Kobayashi K, Kurita Y, Wakui H, Yoshii Y, Yumino Y, Fujii S, Minagawa S, Tsurushige C, Kojima J, Numata T, Shimizu K, Kawaishi M, Kaneko Y, Kamiya N, Hirano J, Odaka M, Morikawa T, Nishimura SL, Nakayama K, Kuwano K (2014) Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. J Immunol 192(3):958–968. doi:10.4049/jimmunol.1302341

    CAS  PubMed  Google Scholar 

  154. Minagawa S, Araya J, Numata T, Nojiri S, Hara H, Yumino Y, Kawaishi M, Odaka M, Morikawa T, Nishimura SL, Nakayama K, Kuwano K (2011) Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-beta-induced senescence of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 300(3):L391–L401. doi:10.1152/ajplung.00097.2010

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Moore BB, Hogaboam CM (2008) Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 294(2):L152–L160. doi:10.1152/ajplung.00313.2007

    CAS  PubMed  Google Scholar 

  156. Ryu JH, Moua T, Daniels CE, Hartman TE, Yi ES, Utz JP, Limper AH (2014) Idiopathic pulmonary fibrosis: evolving concepts. Mayo Clin Proc 89(8):1130–1142. doi:10.1016/j.mayocp.2014.03.016

    PubMed  Google Scholar 

  157. De Felice FG, Ferreira ST (2014) Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 63(7):2262–2272. doi:10.2337/db13-1954

    PubMed  Google Scholar 

  158. Joost HG (2014) Diabetes and cancer: epidemiology and potential mechanisms. Diab Vasc Dis Res. doi:10.1177/1479164114550813

    PubMed  Google Scholar 

  159. Hudson MM, Ness KK, Gurney JG, Mulrooney DA, Chemaitilly W, Krull KR, Green DM, Armstrong GT, Nottage KA, Jones KE, Sklar CA, Srivastava DK, Robison LL (2013) Clinical ascertainment of health outcomes among adults treated for childhood cancer. J Am Med Assoc 309(22):2371–2381. doi:10.1001/jama.2013.6296

    CAS  Google Scholar 

  160. Ness KK, Armstrong GT, Kundu M, Wilson CL, Tchkonia T, Kirkland JL (2014) Frailty in childhood cancer survivors. Cancer. doi:10.1002/cncr.29211

    Google Scholar 

  161. Benson EK, Lee SW, Aaronson SA (2010) Role of progerin-induced telomere dysfunction in HGPS premature cellular senescence. J Cell Sci 123(Pt 15):2605–2612

    PubMed Central  CAS  PubMed  Google Scholar 

  162. Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D’Avanzo C, Chen H, Hooli B, Asselin C, Muffat J, Klee JB, Zhang C, Wainger BJ, Peitz M, Kovacs DM, Woolf CJ, Wagner SL, Tanzi RE, Kim DY (2014) A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature. doi:10.1038/nature13800

    Google Scholar 

Download references

Acknowledgements

The author is grateful for the advice and ideas shared by members of the Geroscience Network supported by NIH grant R24AG044396.

Editor: Francesca Macchiarini, National Institute of Allergy and Infectious Diseases (NIAID), NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Kirkland M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Kirkland, J.L., Tchkonia, T. (2016). The Way Forward: Translation. In: Sierra, F., Kohanski, R. (eds) Advances in Geroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-23246-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23246-1_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23245-4

  • Online ISBN: 978-3-319-23246-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics