Skip to main content

Tuneable Stiffness Design of Soft Continuum Manipulator

  • Conference paper
Intelligent Robotics and Applications

Abstract

Soft continuum robots are highly deformable and manoeuvrable manipulators, capable of navigating through confined space and interacting safely with their surrounding environment, making them ideal for minimally invasive surgical applications. A crucial requirement of a soft robot is to control its overall stiffness efficiently, in order to execute the necessary surgical task in an unstructured environment. This paper presents a comparative study detailing the stiffness characterization of two soft manipulator designs and the formulation of a dynamic stiffness matrix for the purpose of disturbance rejection and stiffness control for precise tip positioning. An empirical approach is used to accurately describe the stiffness characteristics along the length of the manipulator and the derived stiffness matrix is applied in real-time control to reject disturbances. Further, the capability of the two types of soft robots to reject disturbances using the dynamic control technique is tested and compared. The results presented in this paper provide new insights into controlling the stiffness of soft continuum robots for minimally invasive surgical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simaan, N., Taylor, R., Flint, P.: A dexterous system for laryngeal surgery. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 351–357, April 2004

    Google Scholar 

  2. Sears, P., Dupont, P.: A steerable needle technology using curved concentric tubes. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2850–2856, October 2006

    Google Scholar 

  3. Cianchetti, M., Ranzani, T., Gerboni, G., Nanayakkara, T., Althoefer, K., Dasgupta, P., Menciassi, A.: Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: the STIFF-FLOP approach. Soft Robotics 1(2), 122–131 (2014)

    Article  Google Scholar 

  4. Elsayed, Y., Lekakou, C., Ranazani, T., Cianchetti, M., Morino, M., Chirurgia, M., Arezzo, M., Gao, T., Saaj, C.: Crimped braided sleeves for soft, actuating arm in robotic abdominal surgery. Minimally Invasive Therapy & Allied Technologies (2015). doi:10.3109/13645706.2015.1012083

    Article  Google Scholar 

  5. Stilli, A., Wurdemann, H.A., Althoefer, K.: Shrinkable, stiffness-controllable soft manipulator based on a bio-inspired antagonistic actuation principle. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2476-2481, September 14-18, 2014. doi:10.1109/IROS.2014.6942899

  6. Maghooa, F., Agostino, S., Althoefer, K., Wurdemann, H.A.: Tendon and pressure actuation for a bio-inspired manipulator based on an antagonistic principle. In: IEEE International Conference on Robotics and Automation (ICRA), Seattle, USA, May 26–30, 2015

    Google Scholar 

  7. Cheng, N.G., Lobovsky, M.B., Keating, S.J., Setapen, A.M., Gero, K.I., Hosoi, A.E., Iagnemma, K.D.: Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media. In IEEE International Conference on Robotics and Automation, pp. 4328–4333, May 2012

    Google Scholar 

  8. Loeve, A.J., van de Ven, O.S., Vogel, J.G., Breedveld, P., Dankelman, J.: Vacuum packed particles as flexible endoscope guides with controllable rigidity. IGranular Matter 12(6), 543–554 (2010)

    Article  Google Scholar 

  9. Jiang, A., Xynogalas, G., Dasgupta, P., Althoefer, K., Nanayakkara, T.: Design of a variable stiffness flexible manipulator with composite granular jamming and membrane coupling. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2922−2927, October 7-12, 2012

    Google Scholar 

  10. Lee, Y.-T., Choi, H.-R., Chung, W.-K., Youm, Y.: Stiffness control of a coupled tendon-driven robot hand. IEEE Control Systems 14(5), 10–19 (1994). doi:10.1109/37.320882

    Article  Google Scholar 

  11. Mahvash, M., Dupont, P.: Stiffness control of surgical continuum manipulators. IEEE Transactions on Robotics 27(2), 334–345 (2011)

    Article  Google Scholar 

  12. Lekakou, C., Elsayed, Y., Geng, T., Saaj, C.M.: Skins and Sleeves for Soft Robotics: Inspiration from Nature and Architecture. Advanced Engineering Materials (2015). doi:10.1002/adem.201400406

    Article  Google Scholar 

  13. Fraś, J., Czarnowski, J., Maciaś, M., Główka, J., Cianchetti, M., Menciassi, A.: New STIFF-FLOP module construction idea for improved actuation and sensing. In: IEEE International Conference on Robotics and Automation (ICRA), Seattle, USA, May 26-30, 2015

    Google Scholar 

  14. Cianchetti, M., Ranzani, T., Gerboni, G., De Falco, I., Laschi, C., Menciassi, A.: STIFF-FLOP surgical manipulator: mechanical design and experimental characterization of the single module. In: IEEE International Conference on Intelligent and Robotic Systems, pp. 3567-3581 (2014)

    Google Scholar 

  15. Carbone, G.: Stiffness analysis for grasping tasks: grasping in robotics. In: Carbone, G., (ed.) Mechanisms and Machine Science, vol. 10, pp. 17–55. Springer, London (2013)

    MATH  Google Scholar 

  16. Noh, Y., Secco, E.L., Sareh, S., Wurdemann, H., Faragasso, A., Back, J., Liu, H., Sklar, E., Althoefer, K.: A continuum body force sensor designed for flexible surgical robotic devices. In: 36th Annual International Conference of IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3711−3714 (2014)

    Google Scholar 

  17. Noh, Y., Sareh, S., Back, J., Wurdemann, H.A., Ranzani, T., Secco, E.L., Faragasso, A., Liu, H., Althoefer, K.: A three-axial body force sensor for flexible manipulators. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 6388−6393 (2014)

    Google Scholar 

  18. Fraś, J., Czarnowski, J., Maciaś, M., Główka, J.: Static Modeling of Multisection Soft Continuum Manipulator for Stiff-Flop project. Springer (2014)

    Google Scholar 

  19. NDI 3D measurement technology systems. http://www.ndigital.com/medical/products/aurora/

  20. Calinon, S., Bruno, D., Malekzadeh, M.S., Nanayakkara, T., Caldwell, D.G.: Human-robot skills transfer interfaces for a flexible surgical robot. Computer Methods and Programs in Biomedicine 116(2), 81–96 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seri Mastura Mustaza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mustaza, S.M. et al. (2015). Tuneable Stiffness Design of Soft Continuum Manipulator. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R. (eds) Intelligent Robotics and Applications. Lecture Notes in Computer Science(), vol 9246. Springer, Cham. https://doi.org/10.1007/978-3-319-22873-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22873-0_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22872-3

  • Online ISBN: 978-3-319-22873-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics