Skip to main content

Computational Ecosystems in Evolutionary Art, and Their Potential for the Future of Virtual Worlds

  • Chapter
Handbook on 3D3C Platforms

Part of the book series: Progress in IS ((PROIS))

Abstract

In this chapter we look in detail at digital artworks which employ a technique from Artificial Life (ALife) called Computational Ecosystems (CEs). These are systems where digital agents are organized in a hierarchical structure (of a food chain) and trade symbolic units (energy and biomass) as a way of promoting community dynamics. We analyze a set of forty (40) CEs communicating works created in the past two decades. We classify these according to an adapted taxonomy. Then, we proceed to a study of cumulative analysis to delineate common patterns and characteristics that can help analyse this area of creativity and knowledge. We conclude discussing the diversity and heterogeneity of the practice and then suggest how CEs, in the context of virtual worlds, could be used as powerful generative multimedia tools, helpful in building bio-mimicking ecosystems as well as in the animation of non-player characters (NPCs) with human-like behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that most works (93 %) are not controlled; the only exceptions being works presented to the public as static pictures.

  2. 2.

    We have to keep in mind that the sample scrutinized here illustrates about two decades of practice where we have witnessed an immense technological evolution. As a consequence, works from the first decade might exhibit features that are systematically distinct from those of the second. The ability to create (or make use of) certain formal properties or interactive features might not have existed earlier and we should keep this in mind. A more in-depth analysis would be needed to clarify this point.

  3. 3.

    The purist modernist tradition dwells much around the medium, of playing with the properties of the medium. Consider painting: a modernist will ask what can be done with painting, how far can we take it, use its material constraints; and then follows the questioning of what are the “materials of painting”. Krauss contests that idea and argues that it is the “technical support” one should consider, which is not strictly rooted in the properties of the medium, but rather on the set of ideas that inform the practice. For example, the painter might still be working with canvas and ink, but the work is subordinated to an idea, a subject and this is what becomes central. So for instance Ed Rusha is working with the subculture of Los Angeles, the automobile, its slang, the movie-stars (Krauss, 2011).

References

  • Aarseth, E. (1997). Cybertext: Perspectives on ergodic literature. Baltimore, MD: The Johns Hopkins University Press.

    Google Scholar 

  • Al-Rifaie, M., & Bishop, M. (2013). Swarmic sketches deploy attention mechanism. In P. Machado, J. McDermott, & A. Carballal (Eds.), Proceedings of the Second International Conference on Evolutionary and Biologically Inspired Music, Sound, Art and Design, Evomusart 2013 (Vol. 7834, pp. 85–96). Heidelberg: Springer.

    Google Scholar 

  • Annunziato, M. (1998). The Nagual experiment. In Proceedings of the First International Conference on Generative Art (pp. 241–250).

    Google Scholar 

  • Annunziato, M., & Pierucci, P. (2000). Towards artificial societies. In Proceedings of the Third International Conference on Generative Art.

    Google Scholar 

  • Antunes, R. F. (2012). Where is Lourenço Marques? A mosaic of voices in a 3D virtual world. Leonardo Electronic Almanac (Touch and Go), 18(3), 114–121.

    Google Scholar 

  • Antunes, R. (2014). On computational ecosystems in media arts. PhD thesis, Goldsmiths College, University of London.

    Google Scholar 

  • Antunes, R. F., & Leymarie, F. F. (2008). xTNZ-an evolutionary three-dimensional ecosystem. In A. Barbosa (Ed.), Proceedings of the Fourth International Conference on Digital Arts, Artech2008 (pp. 201–204).

    Google Scholar 

  • Antunes, R. F., & Leymarie, F. F. (2010). Epigenetics as aesthetic instrument in a generative virtual ecosystem. In L. Valbom (Ed.), Proceedings of the Fifth International Conference on Digital Art Artech 2010 (pp. 172–176).

    Google Scholar 

  • Antunes, R. F., & Leymarie, F. F. (2012). Generative choreography: Animating in real time dancing avatars. In P. Machado, J. Romero, & A. Carballal (Eds.), Proceedings of the First International Conference on Evolutionary and Biologically Inspired Music, Sound, Art and Design, Evomusart 2012 (pp. 1–10).

    Google Scholar 

  • Antunes, R. F., & Leymarie, F. F. (2013). Real-time behavioral animation of humanoid non-player characters with a computational ecosystem. In R. A. et al. (Ed.), 13th Conference on Intelligent Virtual Agents (iva 2013), lnai 8108 (pp. 382–395). Heidelberg:Springer.

    Google Scholar 

  • Arts, E. (2009). Second life masterpieces—Starax Statosky: Second Life Giotto. Retrieved from http://sichelseifert.wordpress.com/2009/01/05/starax-statosky-second-life-giotto/

  • Bentley, P., & Corne, D. (2002). Creative evolutionary systems. San Diego, CA: Academic.

    Google Scholar 

  • Berry, R., Rungsarityotin, W., & Dorin, A. (2001). Unfinished symphonies—songs of 3 1\2 worlds. In B. et al (Ed.), Ecal 2001 artificial life models for musical applications (pp. 51–64). Konferensbidrag

    Google Scholar 

  • Bisig, D., & Unemi, T. (2010). Cycles—blending natural and artificial properties in a generative artwork. In Proceedings of the xiii Generative Art Conference. Milano, Italy (pp. 140–154). Retrieved from http://lab30.de/2010/en/exhibition/97

  • Boden, M. A., & Edmonds, E. A. (2009). What is generative art? Digital Creativity, 20(1 & 2), 21–46.

    Article  Google Scholar 

  • Bornhofen, S., Heudin, J., Lioret, A., & Torrel, J. (Eds.). (2012). Virtual worlds: Artificial ecosystems and digital art exploration. Paris: Science ebooks.

    Google Scholar 

  • Bornhofen, S., Gardeux, V., & Machizaud, A. (2012). From swarm art toward ecosystem art. International Journal of Swarm Intelligence Research, 3(3), 18.

    Article  Google Scholar 

  • Bown, O., & McCormack, J. (2010). Taming nature: Tapping the creative potential of ecosystem models in the arts. Digital Creativity, 21(4), 215–231.

    Article  Google Scholar 

  • Brown, R., Aleksander, I., MacKenzie, J., & Faith, J. (2001). Biotica: Art, emergence and artificial life. London: Art Books International.

    Google Scholar 

  • Carvalhais, M. (2010). Towards a model for artificial aesthetics. In Proceedings of ga2010—xiii Generative Art Conference.

    Google Scholar 

  • Chen, C.-Y., & Hoyami, J.-C. (2007). Autonomous systems for interactive digital art. In Tenth Generative Art Conference ga2007.

    Google Scholar 

  • Dahlstedt, P., & Nordahl, M. G. (2001, June). Living melodies: Coevolution of sonic communication 34(3)

    Google Scholar 

  • Damer, B., Marcelo, K., Revi, F., Furmanski, T., & Laurel, C. (2005). Nerve garden: Germinating biological metaphors in net-based virtual worlds. In A. Adamatzky & M. Komosinski (Eds.), Artificial life models in software (pp. 67–80). London: Springer.

    Chapter  Google Scholar 

  • Demos, T. J. (2012, April). Art after nature. Artforum, pp. 191–198.

    Google Scholar 

  • Dorin, A. (2003). Meniscus—exhibited at the Experimenta House of Tomorrow. Retrieved 5 Sept—3 Oct 2003, from http://www.csse.monash.edu.au/ aland/meniscus.html

  • Dorin, A. (2005). Artificial life, death and epidemics in evolutionary, generative electronic art. In F. Rothlauf et al. (Ed.), Proceedings of the Third European Workshop on Evolutionary Music and Art, Applications of Evolutionary Computing: Evoworkshops (pp. 448–457). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Dorin, A. (2006). Plague, exhibited at Satellite, Australian Pavillion, for Shanghai Bienalle. Retrieved September 3–27, 2006, from http://www.csse.monash.edu.au/

  • Dorin, A. (2009a). Constellation—exhibited at Biotope, Cube 37 Gallery, Frankston, Victoria, Australia. Curated by CEMA. Retrieved 13 July–9 August, from http://www.csse.monash.edu.au/aland/constellation.html

  • Dorin, A. (2009b). Habitat: Engineering in a simulated audible ecosystem. In M. Giacobini et al. (Eds.), Applications of evolutionary computing (Vol. 5484, pp. 488–497). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Dorin, A. (2012). Pandemic—generative software installation, Exhibited: Bouillants 4, Vern-sur-Seiche, Brittany, France, Gaetan Allin and Laurent Dupuis (artistic directors), 22 April–20 May

    Google Scholar 

  • Driessens and Verstappen. (2006). E-volver—exhibited at the new Onderzoeksgebouw (research building) of the Leiden University Medical Center, in Amsterdam, from http://classic.skor.nl/page/2429/nl?lang=en

  • Eldridge, A., & Dorin, A. (2009). Filterscape: Energy recycling in a creative ecosystem. In M. Gia-cobini (Ed.), Proceeding of Evoworkshops’09 Proceedings of the Evoworkshops 2009 on Applications of Evolutionary Computing (pp. 508–517). Heidelberg: Springer.

    Google Scholar 

  • Eldridge, A., Dorin, A., & McCormack, J. (2008). Manipulating artificial ecosystems. In M. Giacobini et al. (Eds.), Applications of evolutionary computing (Vol. 4974, pp. 392–401). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Heudin, J.-C. (2012). Lifedrop: A drop of life on the web. In S. Bornhofen, J. Heudin, A. Lioret, & J. Torrel (Eds.), Virtual worlds: Artificial ecosystems and digital art exploration (pp. 79–98). Paris: Science ebooks.

    Google Scholar 

  • Hutzler, G., Gortais, B., & Drogoul, A. (2000). The garden of chances: A visual ecosystem. Leonardo, 33, 101–106. MIT Press Journals.

    Article  Google Scholar 

  • Ji, H. (2012). Artificial natures: Creating nature-like aesthetic experiences through immersive artificial life worlds. Ph.D. Dissertation, University of California, Santa Barbara.

    Google Scholar 

  • Ji, H., & Wakefield, G. (2012). Virtual world-making in an interactive art installation: Time of doubles. In S. Bornhofen, J. Heudin, A. Lioret, & J. Torrel (Eds.), Virtual worlds: Artificial ecosystems and digital art exploration (pp. 53–70). Paris: Science ebooks.

    Google Scholar 

  • Kowaliw, T., McCormack, J., & Dorin, A. (2011, April). An interactive electronic art system based on artificial ecosystemics. In 2011 I.E. Symposium on Artificial life (alife) (pp. 162–169). doi: 10.1109/AL-IFE.2011.5954645

  • Krauss, R. E. (2011). Under blue cup. Cambridge, MA: MIT Press.

    Google Scholar 

  • Lambert, N., Latham, W., & Leymarie, F. F. (2013). The emergence and growth of evolutionary art 1980–1993. Leonardo, 46(4), 367–375.

    Article  Google Scholar 

  • Latham, W. (1989). Form synth: The rule-based evolution of complex forms from geometric primitives. In J. Lansdown & R. A. Earnshaw (Eds.), Computers in art, design and animation (pp. 80–108). New York: Springer.

    Chapter  Google Scholar 

  • Lenton, T. M., & Lovelock, J. E. (2001). Daisyworld revisited: Quantifying biological effects on planetary self-regulation. Tellus B, 53(3), 288–305.

    Article  ADS  Google Scholar 

  • Lioret, A. (2012). Artificial life creation for cinema. In S. Bornhofen, J. Heudin, A. Lioret, & J. Torrel (Eds.), Virtual worlds: Artificial ecosystems and digital art exploration (pp. 23–38). Paris: Science ebooks.

    Google Scholar 

  • McCormack, J. (1994). TURBULENCE an interactive installation exploring artificial life. In Visual Proceedings of ACM Siggraph 94 (pp. 182–183). Orlando, FL: Academic Press

    Google Scholar 

  • McCormack, J. (2001). Eden: An evolutionary sonic ecosystem. In J. Sosik & P. Kelemen (Eds.), Lecture notes in artificial intelligence (Vol. 2159, advances in artificial life, pp. 133–142). Berlin: Springer.

    Google Scholar 

  • Mccormack, J. (2005). Open problems in evolutionary music and art. In F. Rothlauf et al. (Eds.), Applications of evolutionary computing, (evomusart 2005) (pp. 428–436). Berlin: Springer.

    Google Scholar 

  • McCormack, J. (2012). CodeForm, Virtual Ecosystem of Artificial Life, Commission for the Ars Electronica Museum, Linz, Austria, from http://jonmccormack.info/~jonmc/sa/artworks/codeform/

  • McCormack, J., & Bown, O. (2009). Life’s what you make: Niche construction and evolutionary art. In M. Giacobini et al. (Eds.), EvoWorkshops (LNCS 5484, pp. 528–537). Berlin: Springer.

    Google Scholar 

  • Mitchell, J. D., & Lovell, R. E. (1995). Environment for the interactive design of emergent art. In Isea 95: Sixth international symposium on electronic arts (pp. 17–21). Montreal, Canada

    Google Scholar 

  • Portway, J., Autogena, L., Hoile, C., & Riley, T. (2004). Black shoals: Stock Market Planetarium, from www.blackshoals.net

  • Prophet, J. (1996). Sublime ecologies and artistic endeavors: Artificial life and interactivity in the online project “TechnoSphere”. Leonardo, 29(5), 339–344. Retrieved from http://www.jstor.org/stable/1576397.

    Article  Google Scholar 

  • Railsback, S. F., & Grimm, V. (2011). Agent-based and individual-based modeling: A practical introduction. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Ray, T. S. (1995). An evolutionary approach to synthetic biology: Zen and the art of creating life. Artificial Life 1(1/2): 179–209. In C. G. Langton (Ed.), Artificial life, an overview (pp. 179–209). The MIT Press.

    Google Scholar 

  • Romero, J., & Machado, P. (Eds.). (2007). The art of artificial evolution: A handbook on evolutionary art and music. Berlin: Springer.

    Google Scholar 

  • Saruwatari, T., Toqunaga, Y., & Hoshino, T. (1994). ADIVERSITY: Stepping up trophic levels. In R. A. Brooks & P. Maes (Eds.), Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems (pp. 424–429).

    Google Scholar 

  • Sommerer, C., & Mignonneau, L. (1994). A-Volve: A real-time interactive environment. In ACM Siggraph Visual Proceedings (pp. 172–173).

    Google Scholar 

  • Sommerer, C., & Mignonneau, L. (2000). Life Spacies II. In G. Stocker & C. Schöpf (Eds.), Ars Electronica 2000 Next Sex (p. 392). Vienna, New York: Springer.

    Google Scholar 

  • Sommerer, C., Mignonneau, L., & Lopez-Gulliver, R. (2001). IKI-IKI Phone—A multiuser Alife art game for mobile phones. In IEEEE International Conference on Multimedia and Expo (ICME), Tokyo, Japan (pp. 152–155).

    Google Scholar 

  • Spinster, A. (2007). Exhibited at down to Earth, Oxford House Art (Oh! Art), from http://www.turbulence.org/blog/archives/002602.html

  • Todd, S., & Latham, W. (1992). Evolutionary art and computers. San Diego, CA: Academic Press.

    MATH  Google Scholar 

  • Ventrella, J. (2005). GenePool: Exploring the interaction between natural selection and sexual selection. In A. Adamatzky & M. Komosinski (Eds.), Artificial life models in software (pp. 81–96). Berlin: Springer. Retrieved from http://www.ventrella.com/alife/genepool.pdf.

    Chapter  Google Scholar 

  • Wakefield, G. (2012). Real-time meta-programming for open-ended computational arts. Ph.D. Dissertation, University of California, Santa Barbara.

    Google Scholar 

  • Wakefield, G., & Ji, H. (2009). Artificial nature: Immersive world making. In R. A. Brooks & P. Maes (Eds.), Applications of evolutionary computing (Lncs 5484, pp. 377–381). Berlin: Springer.

    Google Scholar 

  • Watson, T., & Gobeille, E. (2007). Exhibited at DigiPlaySpace, from http://www.theowatson.com/sitedocs/work.php?id=41

  • Watson, A. J., & Lovelock, J. E. (1983). Biological homeostasis of the global environment: The parable of Daisyworld. Tellus B, 35(4), 286–289.

    Article  ADS  Google Scholar 

  • Whitelaw, M. (2004). Metacreation: Art and artificial life. Cambridge, MA: MIT Press.

    Google Scholar 

  • Yaeger, L. (1994). Computational genetics, physiology, metabolism, neural systems, learning, vision, and behavior on Polyworld: Life in a new context. In C. Langton (Ed.), Artificial life III, Santa Fe Institute Studies in the Sciences of Complexity (Vol. xvii, pp. 263–298). Reading, MA: Addison-Wesley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Filipe Antunes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Antunes, R.F., Leymarie, F.F., Latham, W. (2016). Computational Ecosystems in Evolutionary Art, and Their Potential for the Future of Virtual Worlds. In: Sivan, Y. (eds) Handbook on 3D3C Platforms. Progress in IS. Springer, Cham. https://doi.org/10.1007/978-3-319-22041-3_16

Download citation

Publish with us

Policies and ethics