Skip to main content

Hormone Signaling: Current Perspectives on the Roles of Salicylic Acid and Its Derivatives in Plants

  • Chapter
The Formation, Structure and Activity of Phytochemicals

Abstract

Salicylic acid (SA) is an important plant hormone with a wide range of effects on plant growth and metabolism. Plants lacking SA exhibit enhanced susceptibility to pathogens. SA plays important signaling roles in resistance against biotrophic and hemi-biotrophic phytopathogens. It is synthesized in plastids along two pathways, one involving phenylalanine ammonia lyase (PAL) and the other isochorismate synthase (ICS). In Arabidopsis, during immune response most SA is synthesized through the ICS-dependent pathway, but clearly an ICS-independent pathway also exists. Several SA effector proteins have been identified and characterized which mediate downstream SA signaling. This includes SABP, a catalase, SABP2, a methyl salicylate esterase, SABP3, a carbonic anhydrase, NPR1 (non-expressor of pathogenesis-related 1), NPR3 (a NPR1 paralog), and NPR4 (another NPR1 paralog). NPR3 and NPR4 regulate the turnover of NPR1, a process which plays a key role in activating defense gene expression. The role of SA in abiotic stress signaling is gradually becoming clearer. Various components of SA signaling in biotic stress also appear to impact abiotic stress signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weissmann G (1991) The actions of NSAIDs. Hosp Pract 26(8):60–76

    CAS  Google Scholar 

  2. Weissmann G (1991) Aspirin. Sci Am 264(1):84–90

    Article  CAS  PubMed  Google Scholar 

  3. Kopp E, Ghosh S (1994) Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265(5174):956–959

    Article  CAS  PubMed  Google Scholar 

  4. Hardie DG, Ross FA, Hawley SA (2012) AMP-activated protein kinase: a target for drugs both ancient and modern. Chem Biol 19(10):1222–1236

    Article  CAS  PubMed  Google Scholar 

  5. Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ et al (2012) The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336(6083):918–922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Giannini EG, Kane SV, Testa R, Savarino V (2005) 5-ASA and colorectal cancer chemoprevention in inflammatory bowel disease: can we afford to wait for ‘best evidence’? Dig Liver Dis 37(10):723–731

    Article  CAS  PubMed  Google Scholar 

  7. Wu R, Laplante MA, de Champlain J (2005) Cyclooxygenase-2 inhibitors attenuate angiotensin II-induced oxidative stress, hypertension, and cardiac hypertrophy in rats. Hypertension 45(6):1139–1144

    Article  CAS  PubMed  Google Scholar 

  8. Nilsson S (1959) Treatment of diabetes mellitus with a preparation containing salicylic acid, para-amino benzoic acid, and ascorbic acid (PASCON): a therapeutic experiment. Acta Med Scand 165:273–278

    Article  CAS  PubMed  Google Scholar 

  9. White RF (1979) Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99(2):410–412

    Article  CAS  PubMed  Google Scholar 

  10. Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250(4983):1002–1004

    Article  CAS  PubMed  Google Scholar 

  11. Metraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J et al (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250(4983):1004–1006

    Article  CAS  PubMed  Google Scholar 

  12. Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S et al (1992) Acquired resistance in Arabidopsis. Plant Cell 4(6):645–656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Vernooij B, Uknes S, Ward E, Ryals J (1994) Salicylic acid as a signal molecule in plant-pathogen interactions. Curr Opin Cell Biol 6(2):275–279

    Article  CAS  PubMed  Google Scholar 

  14. Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S et al (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261(5122):754–756

    Article  CAS  PubMed  Google Scholar 

  15. Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266(5188):1247–1250

    Article  CAS  PubMed  Google Scholar 

  16. Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  CAS  PubMed  Google Scholar 

  17. Yan S, Dong X (2014) Perception of the plant immune signal salicylic acid. Curr Opin Plant Biol 20C:64–68

    Article  CAS  Google Scholar 

  18. Lawton KA, Friedrich L, Hunt M, Weymann K, Delaney T, Kessmann H et al (1996) Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J 10(1):71–82

    Article  CAS  PubMed  Google Scholar 

  19. Li S, Li H, Cao X, Chen C (2014) Synthesis and bio-evaluation of novel salicylic acid-oriented thiourea derivatives with potential application in agriculture. Lett Drug Des Discov 11:98–103

    Article  CAS  Google Scholar 

  20. Raskin I, Ehmann A, Melander WR, Meeuse BJ (1987) Salicylic acid: a natural inducer of heat production in arum lilies. Science 237(4822):1601–1602

    Article  CAS  PubMed  Google Scholar 

  21. Manthe B, Schulz M, Schnable H (1992) Effect of salicylic acid on growth and stomatal movements of Vicia faba: evidence for salicylic acid metabolism. J Chem Ecol 18:1525–1539

    Article  CAS  PubMed  Google Scholar 

  22. Lee JS (1998) The mechanism of stomatal closing by salicylic acid in Commelina communis L. J Plant Biol 41:97–102

    Article  Google Scholar 

  23. Rate DN, Cuenca JV, Bowman GR, Guttman DS, Greenberg JT (1999) The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Plant Cell 11(9):1695–1708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Morris K, MacKerness SA, Page T, John CF, Murphy AM, Carr JP et al (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J 23(5):677–685

    Article  CAS  PubMed  Google Scholar 

  25. Rao MV, Lee HI, Davis KR (2002) Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. Plant J 32(4):447–456

    Article  CAS  PubMed  Google Scholar 

  26. Rao MV, Davis KR (2001) The physiology of ozone induced cell death. Planta 213(5):682–690

    Article  CAS  PubMed  Google Scholar 

  27. Vanacker H, Lu H, Rate DN, Greenberg JT (2001) A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis. Plant J 28(2):209–216

    Article  CAS  PubMed  Google Scholar 

  28. Traw MB, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133(3):1367–1375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Norman C, Howell KA, Millar AH, Whelan JM, Day DA (2004) Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiol 134(1):492–501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Clarke SM, Mur LA, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38(3):432–447

    Article  CAS  PubMed  Google Scholar 

  31. Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C et al (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141(3):910–923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Stacey G, McAlvin CB, Kim SY, Olivares J, Soto MJ (2006) Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago truncatula. Plant Physiol 141(4):1473–1481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Alonso-Ramirez A, Rodriguez D, Reyes D, Jimenez JA, Nicolas G, Lopez-Climent M et al (2009) Cross-talk between gibberellins and salicylic acid in early stress responses in Arabidopsis thaliana seeds. Plant Signal Behav 4(8):750–751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Alonso-Ramirez A, Rodriguez D, Reyes D, Jimenez JA, Nicolas G, Lopez-Climent M et al (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150(3):1335–1344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Mateo A, Funck D, Muhlenbock P, Kular B, Mullineaux PM, Karpinski S (2006) Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. J Exp Bot 57(8):1795–1807

    Article  CAS  PubMed  Google Scholar 

  36. Nawrath C, Metraux JP (1999) Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11(8):1393–1404

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS et al (2007) The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 20(8):955–965

    Article  CAS  PubMed  Google Scholar 

  38. Catinot J, Buchala A, Abou-Mansour E, Metraux JP (2008) Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett 582(4):473–478

    Article  CAS  PubMed  Google Scholar 

  39. Ogawa D, Nakajima N, Sano T, Tamaoki M, Aono M, Kubo A et al (2005) Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. Plant Cell Physiol 46(7):1062–1072

    Article  CAS  PubMed  Google Scholar 

  40. Sawada H, Shim IS, Usui K (2006) Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis-modulation by salt stress in rice seedlings. Plant Sci 171:263–270

    Article  CAS  Google Scholar 

  41. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  CAS  PubMed  Google Scholar 

  42. Tsai CJ, Harding SA, Tschaplinski TJ, Lindroth RL, Yuan Y (2006) Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytol 172(1):47–62

    Article  CAS  PubMed  Google Scholar 

  43. Zhang H, Franken P (2014) Comparison of systemic and local interactions between the arbuscular mycorrhizal fungus Funneliformis mosseae and the root pathogen Aphanomyces euteiches in Medicago truncatula. Mycorrhiza 24(6):419–430

    Article  CAS  PubMed  Google Scholar 

  44. Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9, e0156

    Article  PubMed Central  PubMed  Google Scholar 

  45. Dempsey DA, Klessig DF (1994) Salicylic acid, active oxygen species and systemic acquired resistance in plants. Trends Cell Biol 4(9):334–338

    Article  CAS  PubMed  Google Scholar 

  46. Yalpani N, Leon J, Lawton MA, Raskin I (1993) Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol 103(2):315–321

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Ellis BE, Amrhein N (1971) The “NIH shift” during aromatic hydroxylation in higher plants. Phytochemistry 10:3069–3072

    Article  CAS  Google Scholar 

  48. El-Basyouni SZ, Chen D, Ibrahim RK, Neish AC, Towers GH (1964) The biosynthesis of hydroxybenzoic acids in higher plants. Phytochemistry 3:485–492

    Article  CAS  Google Scholar 

  49. Chadha KC, Brown SA (1974) Biosynthesis of phenolic acids in tomato plants infected with Agrobacterium tumefaciens. Can J Bot 52:2041–2047

    Article  CAS  Google Scholar 

  50. Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414(6863):562–565

    Article  CAS  PubMed  Google Scholar 

  51. Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8(10):1809–1819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Garcion C, Lohmann A, Lamodiere E, Catinot J, Buchala A, Doermann P et al (2008) Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis. Plant Physiol 147(3):1279–1287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Strawn MA, Marr SK, Inoue K, Inada N, Zubieta C, Wildermuth MC (2007) Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J Biol Chem 282(8):5919–5933

    Article  CAS  PubMed  Google Scholar 

  54. Enyedi AJ, Yalpani N, Silverman P, Raskin I (1992) Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc Natl Acad Sci U S A 89(6):2480–2484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Malamy J, Hennig J, Klessig DF (1992) Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection. Plant Cell 4(3):359–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Enyedi AJ, Raskin I (1993) Induction of UDP-glucose:salicylic acid glucosyltransferase activity in tobacco mosaic virus-inoculated tobacco (Nicotiana tabacum) leaves. Plant Physiol 101(4):1375–1380

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Chen Z, Malamy J, Henning J, Conrath U, Sanchez-Casas P, Silva H et al (1995) Induction, modification, and transduction of the salicylic acid signal in plant defense responses. Proc Natl Acad Sci U S A 92(10):4134–4137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Kawano T, Tanaka S, Kadono T, Muto S (2004) Salicylic acid glucoside acts as a slow inducer of oxidative burst in tobacco suspension culture. Zeitschrift fur Naturforschung 59(9-10):684–692

    CAS  PubMed  Google Scholar 

  59. Kawano T, Furuichi T, Muto S (2004) Controlled salicylic acid levels and corresponding signaling mechanisms in plants. Plant Biotechnol 21(5):319–335

    Article  CAS  Google Scholar 

  60. Lee HI, Raskin I (1998) Glucosylation of salicylic acid in Nicotiana tabacum Cv. Xanthi-nc Phytopathology 88(7):692–697

    Article  CAS  PubMed  Google Scholar 

  61. Dean JV, Delaney SP (2008) Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Physiol Plant 132(4):417–425

    Article  CAS  PubMed  Google Scholar 

  62. Shulaev V, Silverman P, Raskin I (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385(6618):718–721

    Article  CAS  Google Scholar 

  63. Seskar M, Shulaev V, Raskin I (1998) Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol 116:387–392

    Article  CAS  PubMed Central  Google Scholar 

  64. Chen F, D’Auria JC, Tholl D, Ross JR, Gershenzon J, Noel JP et al (2003) An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J 36(5):577–588

    Article  CAS  PubMed  Google Scholar 

  65. Song JT, Koo YJ, Park JB, Seo YJ, Cho YJ, Seo HS et al (2009) The expression patterns of AtBSMT1 and AtSAGT1 encoding a salicylic acid (SA) methyltransferase and a SA glucosyltransferase, respectively, in Arabidopsis plants with altered defense responses. Mol Cells 28(2):105–109

    Article  CAS  PubMed  Google Scholar 

  66. Liu PP, von Dahl CC, Park SW, Klessig DF (2011) Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and tobacco. Plant Physiol 155(4):1762–1768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Attaran E, Zeier TE, Griebel T, Zeier J (2009) Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell 21(3):954–971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318(5847):113–116

    Article  CAS  PubMed  Google Scholar 

  69. Steffan H, Ziegler A, Rapp A (1988) N-Salicyloyl-aspartic acid: a new phenolic compound in grapevines. Vitis 27:79–86

    CAS  Google Scholar 

  70. Bourne DJ, Barrow KD, Milborrow BV (1991) Salicyloylaspartate as an endogenous component in the leaves of Phaseolus vulgaris. Phytochemistry 30:4041–4044

    Article  CAS  Google Scholar 

  71. Chen Y, Shen H, Wang M, Li Q, He Z (2013) Salicyloyl-aspartate synthesized by the acetyl-amido synthetase GH3.5 is a potential activator of plant immunity in Arabidopsis. Acta Biochim Biophys Sin 45(10):827–836

    Article  CAS  PubMed  Google Scholar 

  72. Zhang Z, Li Q, Li Z, Staswick PE, Wang M, Zhu Y et al (2007) Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol 145(2):450–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Baek D, Pathange P, Chung JS, Jiang J, Gao L, Oikawa A et al (2010) A stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in Arabidopsis. Plant Cell Environ 33(8):1383–1392

    CAS  PubMed  Google Scholar 

  74. Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ (1996) Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8(11):2033–2046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Rietz S, Stamm A, Malonek S, Wagner S, Becker D, Medina-Escobar N et al (2011) Different roles of enhanced disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity. New Phytol 191(1):107–119

    Article  CAS  PubMed  Google Scholar 

  76. Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6(4):365–371

    Article  CAS  PubMed  Google Scholar 

  77. Falk A, Feys BJ, Frost LN, Jones JD, Daniels MJ, Parker JE (1999) EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci U S A 96(6):3292–3297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Bhattacharjee S, Halane MK, Kim SH, Gassmann W (2011) Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science 334(6061):1405–1408

    Article  CAS  PubMed  Google Scholar 

  79. Heidrich K, Wirthmueller L, Tasset C, Pouzet C, Deslandes L, Parker JE (2011) Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 334(6061):1401–1404

    Article  CAS  PubMed  Google Scholar 

  80. Barrett AJ, Brown MA, Dando PM, Knight CG, McKie N, Rawlings ND et al (1995) Thimet oligopeptidase and oligopeptidase M or neurolysin. Methods Enzymol 248:529–556

    Article  CAS  PubMed  Google Scholar 

  81. Moreau M, Westlake T, Zampogna G, Popescu G, Tian M, Noutsos C et al (2013) The Arabidopsis oligopeptidases TOP1 and TOP2 are salicylic acid targets that modulate SA-mediated signaling and the immune response. Plant J 76(4):603–614

    Article  CAS  PubMed  Google Scholar 

  82. Chen Z, Ricigliano JW, Klessig DF (1993) Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proc Natl Acad Sci U S A 90(20):9533–9537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Du H, Klessig DF (1997) Identification of a soluble, high-affinity salicylic acid-binding protein in tobacco. Plant Physiol 113(4):1319–1327

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262(5141):1883–1886

    Article  CAS  PubMed  Google Scholar 

  85. Kawano T, Sahashi N, Takahashi K, Uozumi N, Muto S (1998) Salicylic acid induces extracellular generation of Superoxide followed by an increase in cytosolic calcium ion in tobacco suspension culture: the earliest events in salicylic acid signal transduction. Plant Cell Physiol 39:721–730

    Article  CAS  Google Scholar 

  86. Bi YM, Kenton P, Mur L, Darby R, Draper J (1995) Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J 8(2):235–245

    Article  CAS  PubMed  Google Scholar 

  87. Ruffer M, Steipe B, Zenk MH (1995) Evidence against specific binding of salicylic acid to plant catalase. FEBS Lett 377(2):175–180

    Article  CAS  PubMed  Google Scholar 

  88. Kumar D, Klessig DF (2003) High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc Natl Acad Sci U S A 100(26):16101–16106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Padhi SK, Fujii R, Legatt GA, Fossum SL, Berchtold R, Kazlauskas RJ (2010) Switching from an esterase to a hydroxynitrile lyase mechanism requires only two amino acid substitutions. Chem Biol 17(8):863–871

    Article  CAS  PubMed  Google Scholar 

  90. Forouhar F, Yang Y, Kumar D, Chen Y, Fridman E, Park SW et al (2005) Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc Natl Acad Sci U S A 102(5):1773–1778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Kumar D, Klessig DF (2008) The search for the salicylic acid receptor led to discovery of the SAR signal receptor. Plant Signal Behav 3(9):691–692

    Article  PubMed Central  PubMed  Google Scholar 

  92. Vlot AC, Liu PP, Cameron RK, Park SW, Yang Y, Kumar D et al (2008) Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J 56(3):445–456

    Article  CAS  PubMed  Google Scholar 

  93. Manosalva PM, Park SW, Forouhar F, Tong L, Fry WE, Klessig DF (2010) Methyl esterase 1 (StMES1) is required for systemic acquired resistance in potato. Mol Plant Microbe Interact 23(9):1151–1163

    Article  CAS  PubMed  Google Scholar 

  94. Sun W, Xu X, Zhu H, Liu A, Liu L, Li J et al (2010) Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant Cell Physiol 51(6):997–1006

    Article  CAS  PubMed  Google Scholar 

  95. Zhao N, Guan J, Forouhar F, Tschaplinski TJ, Cheng ZM, Tong L et al (2009) Two poplar methyl salicylate esterases display comparable biochemical properties but divergent expression patterns. Phytochemistry 70(1):32–39

    Article  CAS  PubMed  Google Scholar 

  96. Slaymaker DH, Navarre DA, Clark D, del Pozo O, Martin GB, Klessig DF (2002) The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci U S A 99(18):11640–11645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Clark D, Rowlett RS, Coleman JR, Klessig DF (2004) Complementation of the yeast deletion mutant Delta NCE103 by members of the beta class of carbonic anhydrases is dependent on carbonic anhydrase activity rather than on antioxidant activity. Biochem J 379(Pt 3):609–615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Restrepo S, Myers KL, del Pozo O, Martin GB, Hart AL, Buell CR et al (2005) Gene profiling of a compatible interaction between Phytophthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase. Mol Plant Microbe Interact 18(9):913–922

    Article  CAS  PubMed  Google Scholar 

  99. Ferreira FJ, Guo C, Coleman JR (2008) Reduction of plastid-localized carbonic anhydrase activity results in reduced Arabidopsis seedling survivorship. Plant Physiol 147(2):585–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863

    Article  CAS  PubMed  Google Scholar 

  101. Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci U S A 95(11):6531–6536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Delaney TP, Friedrich L, Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci U S A 92(14):6602–6606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88(1):57–63

    Article  CAS  PubMed  Google Scholar 

  104. Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X (2009) Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137(5):860–872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N et al (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486(7402):228–232

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID et al (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1(6):639–647

    Article  CAS  PubMed  Google Scholar 

  107. Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113(7):935–944

    Article  CAS  PubMed  Google Scholar 

  108. Zhang Y, Fan W, Kinkema M, Li X, Dong X (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci U S A 96(11):6523–6528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Tian M, von Dahl CC, Liu PP, Friso G, van Wijk KJ, Klessig DF (2012) The combined use of photoaffinity labeling and surface plasmon resonance-based technology identifies multiple salicylic acid-binding proteins. Plant J 72(6):1027–1038

    Article  CAS  PubMed  Google Scholar 

  110. Wang R, Rajagopalan K, Sadre-Bazzaz K, Moreau M, Klessig DF, Tong L (2014) Structure of the Arabidopsis thaliana TOP2 oligopeptidase. Acta Cryst 70(Pt 5):555–559

    CAS  Google Scholar 

  111. Walley JW, Rowe HC, Xiao Y, Chehab EW, Kliebenstein DJ, Wagner D et al (2008) The chromatin remodeler SPLAYED regulates specific stress signaling pathways. PLoS Pathog 4(12), e1000237

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  112. Berr A, Menard R, Heitz T, Shen WH (2012) Chromatin modification and remodelling: a regulatory landscape for the control of Arabidopsis defence responses upon pathogen attack. Cell Microbiol 14(6):829–839

    Article  CAS  PubMed  Google Scholar 

  113. Choi SM, Song HR, Han SK, Han M, Kim CY, Park J et al (2012) HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. Plant J 71(1):135–146

    Article  CAS  PubMed  Google Scholar 

  114. Kim KC, Lai Z, Fan B, Chen Z (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20(9):2357–2371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Wang C, Gao F, Wu J, Dai J, Wei C, Li Y (2010) Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression. Plant Cell Physiol 51(8):1291–1299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. van den Burg HA, Takken FL (2009) Does chromatin remodeling mark systemic acquired resistance? Trends Plant Sci 14(5):286–294

    Article  PubMed  CAS  Google Scholar 

  117. Luna E, Bruce TJ, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158(2):844–853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Luna E, Ton J (2012) The epigenetic machinery controlling transgenerational systemic acquired resistance. Plant Signal Behav 7(6):615–618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101–122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Underwood W, Melotto M, He SY (2007) Role of plant stomata in bacterial invasion. Cell Microbiol 9(7):1621–1629

    Article  CAS  PubMed  Google Scholar 

  121. Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM et al (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J 73(1):91–104

    Article  CAS  PubMed  Google Scholar 

  122. Mori IC, Pinontoan R, Kawano T, Muto S (2001) Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. Plant Cell Physiol 42(12):1383–1388

    Article  CAS  PubMed  Google Scholar 

  123. Montillet JL, Leonhardt N, Mondy S, Tranchimand S, Rumeau D, Boudsocq M et al (2013) An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biol 11(3), e1001513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Sharma YK, Leon J, Raskin I, Davis KR (1996) Ozone-induced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc Natl Acad Sci U S A 93(10):5099–5104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17(6):603–614

    Article  CAS  PubMed  Google Scholar 

  126. Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165(9):920–931

    Article  CAS  PubMed  Google Scholar 

  127. Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G et al (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47(3):224–231

    Article  CAS  PubMed  Google Scholar 

  128. Yang ZM, Wang J, Wang SH, Xu LL (2003) Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta 217(1):168–174

    CAS  PubMed  Google Scholar 

  129. Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132(1):272–281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128(2):682–695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138(2):882–897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116(4):1351–1357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Dat JF, Foyer CH, Scott IM (1998) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol 118(4):1455–1461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161(4):405–413

    Article  CAS  PubMed  Google Scholar 

  135. Kang HM, Saltveit ME (2002) Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol Plant 115(4):571–576

    Article  CAS  PubMed  Google Scholar 

  136. Kang GZ, Wang ZX, Xia KF, Sun GC (2007) Protection of ultrastructure in chilling-stressed banana leaves by salicylic acid. J Zhejiang Univ Sci 8(4):277–282

    Article  CAS  Google Scholar 

  137. Cai G, Wang G, Wang L, Pan J, Liu Y, Li D, ZmMKK1, a novel group (2014) A mitogen-activated protein kinase kinase gene in maize, conferred chilling stress tolerance and was involved in pathogen defense in transgenic tobacco. Plant Sci 214:57–73

    Article  CAS  PubMed  Google Scholar 

  138. Tasgin E, Atici O, Nalbantoglu B, Popova LP (2006) Effects of salicylic acid and cold treatments on protein levels and on the activities of antioxidant enzymes in the apoplast of winter wheat leaves. Phytochemistry 67(7):710–715

    Article  CAS  PubMed  Google Scholar 

  139. Janda T, Szalai G, Lesko K, Yordanova R, Apostol S, Popova LP (2007) Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. Phytochemistry 68(12):1674–1682

    Article  CAS  PubMed  Google Scholar 

  140. Wang R, Li R, Sun Z, Ren Y, Yue W (2006) [Anti-freezing proteins and plant responses to low temperature stress]. Ying Yong Sheng Tai Xue Bao 17(3):551–556

    PubMed  Google Scholar 

  141. Yu XM, Griffith M, Wiseman SB (2001) Ethylene induces antifreeze activity in winter rye leaves. Plant Physiol 126(3):1232–1240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Stevens J, Senaratna T, Sivasithamparam K (2006) Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilization. Plant Growth Regulation 49:77

    CAS  Google Scholar 

  143. Szepesi A, Csiszar J, Gemes K, Horvath E, Horvath F, Simon ML et al (2009) Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. J Plant Physiol 166(9):914–925

    Article  CAS  PubMed  Google Scholar 

  144. Kang G, Li G, Xu W, Peng X, Han Q, Zhu Y et al (2012) Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J Proteome Res 11(12):6066–6079

    CAS  PubMed  Google Scholar 

  145. Korkmaz A, Uzunlu M, Demirkiran A (2007) Treatments with acetyl salicylic acid protects muskmelon seedlings against drought stress. Acta Physiol Plant 29:503–508

    Article  CAS  Google Scholar 

  146. Hamada AM (2001) Salicylic acid versus salinity-drought-induced stress on wheat seedlings. Rostl Vyr 47:444–450

    CAS  Google Scholar 

  147. Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl Salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    Article  CAS  Google Scholar 

  148. Nemeth R, Janda T, Horvath E, Paldi E, Szalai G (2002) Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci 162:569–574

    Article  CAS  Google Scholar 

  149. Bandurska H, Stroinski A (2005) The effect of Salicylic acid on barley response to water deficit. Acta Physiol Plant 27:379–386

    Article  CAS  Google Scholar 

  150. Yang Y, Qi M, Mei C (2004) Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J 40(6):909–919

    Article  CAS  PubMed  Google Scholar 

  151. Jonak C, Okresz L, Bogre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5(5):415–424

    Article  CAS  PubMed  Google Scholar 

  152. Chung E, Park JM, Oh SK, Joung YH, Lee S, Choi D (2004) Molecular and biochemical characterization of the Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) gene induced by abiotic and biotic stresses. Planta 220(2):286–295

    Article  CAS  PubMed  Google Scholar 

  153. Leclercq J, Ranty B, Sanchez-Ballesta MT, Li Z, Jones B, Jauneau A et al (2005) Molecular and biochemical characterization of LeCRK1, a ripening-associated tomato CDPK-related kinase. J Exp Bot 56(409):25–35

    CAS  PubMed  Google Scholar 

  154. Hettiarachchi GH, Reddy MK, Sopory SK, Chattopadhyay S (2005) Regulation of TOP2 by various abiotic stresses including cold and salinity in pea and transgenic tobacco plants. Plant Cell Physiol 46(7):1154–1160

    Article  CAS  PubMed  Google Scholar 

  155. Yang Y, He M, Zhu Z, Li S, Xu Y, Zhang C et al (2012) Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol 12:140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Shen Y, Tang MJ, Hu YL, Lin ZP (2004) Isolation and characterization of a dehydrin-like gene from drought-tolerant Boea crassifolia. Plant Sci 166:1167–1175

    Article  CAS  Google Scholar 

  157. Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA et al (1987) Characterization of osmotin: a thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol 85(2):529–536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772):436–439

    Article  CAS  PubMed  Google Scholar 

  159. van Loon LC, Geraats BP, Linthorst HJ (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11(4):184–191

    Article  PubMed  CAS  Google Scholar 

  160. Gupta V, Willits MG, Glazebrook J (2000) Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid signaling by SA. Mol Plant Microbe Interact 13(5):503–511

    Article  CAS  PubMed  Google Scholar 

  161. Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC et al (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 97(21):11655–11660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  162. van Wees SC, de Swart EA, van Pelt JA, van Loon LC, Pieterse CM (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97(15):8711–8716

    Article  PubMed Central  PubMed  Google Scholar 

  163. Mur LA, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140(1):249–262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ et al (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15(3):760–770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Yuan Y, Zhong S, Li Q, Zhu Z, Lou Y, Wang L et al (2007) Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J 5(2):313–324

    Article  CAS  PubMed  Google Scholar 

  166. Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  167. Broekaert WF, Delaure SL, De Bolle MF, Cammue BP (2006) The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44:393–416

    Article  CAS  PubMed  Google Scholar 

  168. Sato M, Tsuda K, Wang L, Coller J, Watanabe Y, Glazebrook J et al (2010) Network modeling reveals prevalent negative regulatory relationships between signaling sectors in Arabidopsis immune signaling. PLoS Pathog 6(7), e1001011

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  169. Glazebrook J, Chen W, Estes B, Chang HS, Nawrath C, Metraux JP et al (2003) Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J 34(2):217–228

    Article  CAS  PubMed  Google Scholar 

  170. Leon-Reyes A, Spoel SH, De Lange ES, Abe H, Kobayashi M, Tsuda S et al (2009) Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling. Plant Physiol 149(4):1797–1809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  171. Cao FY, Yoshioka K, Desveaux D (2011) The roles of ABA in plant-pathogen interactions. J Plant Res 124(4):489–499

    Article  CAS  PubMed  Google Scholar 

  172. Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14(6):310–317

    Article  CAS  PubMed  Google Scholar 

  173. Whenham RJ, Fraser RS, Brown LP, Payne JA (1986) Tobacco-mosaic-virus-induced increase in abscisic-acid concentration in tobacco leaves: intracellular location in light and dark-green areas, and relationship to symptom development. Planta 168(4):592–598

    Article  CAS  PubMed  Google Scholar 

  174. Ward EW, Cahill DM, Bhattacharyya MK (1989) Abscisic acid suppression of phenylalanine ammonia-lyase activity and mRNA, and resistance of soybeans to phytophthora megasperma f.sp. Glycinea. Plant Physiol 91(1):23–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  175. Jiang CJ, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R et al (2010) Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Mol Plant Microbe Interact 23(6):791–798

    Article  CAS  PubMed  Google Scholar 

  176. Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T et al (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20(6):1678–1692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Dharmasiri S, Jayaweera T, Dharmasiri N (2013) Plant hormone signalling: current perspectives on perception and mechanisms of action. Ceylon J Sci 42(1):1–17

    Google Scholar 

  178. Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459(7250):1071–1078

    Article  CAS  PubMed  Google Scholar 

  179. Chague V, Maor R, Sharon A (2009) CgOpt1, a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity. BMC Microbiol 9:173

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  180. Yin C, Park JJ, Gang DR, Hulbert SH (2014) Characterization of a Tryptophan 2-Monooxygenase Gene from Puccinia graminis f. sp. tritici Involved in Auxin Biosynthesis and Rust Pathogenicity. Mol Plant Microbe Interact 27(3):227–235

    Article  CAS  PubMed  Google Scholar 

  181. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17(20):1784–1790

    Article  CAS  PubMed  Google Scholar 

  182. Manulis S, Haviv-Chesner A, Brandl MT, Lindow SE, Barash I (1998) Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. Mol Plant Microbe Interact 11(7):634–642

    Article  CAS  PubMed  Google Scholar 

  183. Glickmann E, Gardan L, Jacquet S, Hussain S, Elasri M, Petit A et al (1998) Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol Plant Microbe Interact 11(2):156–162

    Article  CAS  PubMed  Google Scholar 

  184. Chen Z, Agnew JL, Cohen JD, He P, Shan L, Sheen J et al (2007) Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci U S A 104(50):20131–20136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  185. Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2(11), e123

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  186. Gonzalez-Lamothe R, El Oirdi M, Brisson N, Bouarab K (2012) The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development. Plant Cell 24(2):762–777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  187. Mutka AM, Fawley S, Tsao T, Kunkel BN (2013) Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defenses. Plant J 74(5):746–754

    Article  CAS  PubMed  Google Scholar 

  188. Navarro L, Bari R, Achard P, Lison P, Nemri A, Harberd NP et al (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18(9):650–655

    Article  CAS  PubMed  Google Scholar 

  189. Naseem M, Kunz M, Ahmed N, Dandekar T (2013) Integration of boolean models on hormonal interactions and prospects of cytokinin-auxin crosstalk in plant immunity. Plant Signal Behav 8(4), e23890

    Article  PubMed  CAS  Google Scholar 

  190. Argueso CT, Ferreira FJ, Epple P, To JP, Hutchison CE, Schaller GE et al (2012) Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet 8(1), e1002448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  191. Choi J, Choi D, Lee S, Ryu CM, Hwang I (2011) Cytokinins and plant immunity: old foes or new friends? Trends Plant Sci 16(7):388–394

    Article  CAS  PubMed  Google Scholar 

  192. Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  193. Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, Hwang I (2010) The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev Cell 19(2):284–295

    Article  CAS  PubMed  Google Scholar 

  194. Guan L, Scandalios JG (1995) Developmentally related responses of maize catalase genes to salicylic acid. Proc Natl Acad Sci U S A 92(13):5930–5934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  195. Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164(3):317–322

    Article  CAS  Google Scholar 

  196. Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164(6):728–736

    Article  CAS  PubMed  Google Scholar 

  197. McCue PA, Zheng Z, Pinkham JL, Shetty K (2000) A model for enhanced pea seedling vigour following low pH and salicylic acid treatments. Process Biochem 35(6):603–613

    Article  CAS  Google Scholar 

  198. Agostini EA, Machado-Neto NB, Costodio CC (2013) Induction of water deficit tolerance by cold shock and salicylic acid during germination in the common bean. Acta Scientiarum Agronomy 35(2):209–219

    Article  Google Scholar 

  199. Lee S, Kim SG, Park CM (2010) Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol 188(2):626–637

    Article  CAS  PubMed  Google Scholar 

  200. Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126(3):1024–1030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  201. Zhou YC, Zheng RL (1991) Phenolic compounds and an analog as superoxide anion scavengers and antioxidants. Biochem Pharmacol 42(6):1177–1179

    Article  CAS  PubMed  Google Scholar 

  202. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    Article  CAS  PubMed  Google Scholar 

  203. Fragniere C, Serrano M, Abou-Mansour E, Metraux JP, L’Haridon F (2011) Salicylic acid and its location in response to biotic and abiotic stress. FEBS Lett 585(12):1847–1852

    Article  CAS  PubMed  Google Scholar 

  204. Serrano M, Wang B, Aryal B, Garcion C, Abou-Mansour E, Heck S et al (2013) Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5. Plant Physiol 162(4):1815–1821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

The authors acknowledge support from ETSU (major RDC 14-021) and the National Science Foundation (MCB 1022077) to DK and Graduate fellowships from ETSU to IH and DC. Several new SA-binding proteins were recently identified (Manohar, Murli, et al. “Identification of multiple salicylic acid-binding proteins using two high throughput screens.” Frontiers in plant science 5, 2014) which could not be included in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhirendra Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, D. et al. (2015). Hormone Signaling: Current Perspectives on the Roles of Salicylic Acid and Its Derivatives in Plants. In: Jetter, R. (eds) The Formation, Structure and Activity of Phytochemicals. Recent Advances in Phytochemistry, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-319-20397-3_5

Download citation

Publish with us

Policies and ethics