Skip to main content

Sensitivity of the Electrocardiography Inverse Solution to the Torso Conductivity Uncertainties

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9126))

  • 1720 Accesses

Abstract

Electrocardiography imaging (ECGI) is a new non invasive technology used for heart diagnosis. It allows to construct the electrical potential on the heart surface only from measurement on the body surface and some geometrical informations of the torso. The purpose of this work is twofold: First, we propose a new formulation to calculate the distribution of the electric potential on the heart, from measurements on the torso surface. Second, we study the influence of the errors and uncertainties on the conductivity parameters, on the ECGI solution. We use an optimal control formulation for the mathematical formulation of the problem with a stochastic diffusion equation as a constraint. The descretization is done using stochastic Galerkin method allowing to separate random and deterministic variables. The optimal control problem is solved using a conjugate gradient method where the gradient of the cost function is computed with an adjoint technique. The efficiency of this approach to solve the inverse problem and the usability to quantify the effect of conductivity uncertainties in the torso are demonstrated through a number of numerical simulations on a 2D geometrical model. Our results show that adding \(\pm 50\,\%\) uncertainties in the fat conductivity does not alter the inverse solution, whereas adding \(\pm 50\,\%\) uncertainties in the lung conductivity affects the reconstructed heart potential by almostĀ \(50\,\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shah, A.J., Lim, H.S., Yamashita, S., Zellerhoff, S., Berte, B., Mahida, S., Hooks, D., Aljefairi, N., Derval, N., Denis, A., et al.: Non invasive ecg mapping to guide catheter ablation. JAFIB: J. Atrial Fibrillation 7(3) (2014)

    Google ScholarĀ 

  2. Hadamard, J.: Lectures on Cauchyā€™s Problem in Linear Partial Differential Equations. Yale University Press, New Haven (1923)

    MATHĀ  Google ScholarĀ 

  3. Ghosh, S., Rudy, Y.: Application of l1-norm regularization to epicardial potential solution of the inverse electrocardiography problem. Ann. Biomed. Eng. 37(5), 902ā€“912 (2009)

    ArticleĀ  Google ScholarĀ 

  4. Zakharov, E., Kalinin, A.: Algorithms and numerical analysis of dc fields in a piecewise-homogeneous medium by the boundary integral equation method. Comput. Math. Model. 20(3), 247ā€“257 (2009)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  5. Li, G., He, B.: Localization of the site of origin of cardiac activation by means of a heart-model-based electrocardiographic imaging approach. Biomed. Eng. IEEE Trans. 48(6), 660ā€“669 (2001)

    ArticleĀ  Google ScholarĀ 

  6. Doessel, O., Jiang, Y., Schulze, W.H.: Localization of the origin of premature beats using an integral method. Int. J. Bioelectromagnetism 13, 178ā€“183 (2011)

    Google ScholarĀ 

  7. Zemzemi, N., Dubois, R., Coudiere, Y., Bernus, O., Haissaguerre, M.: A machine learning regularization of the inverse problem in electrocardiography imaging. In: Computing in Cardiology Conference (CinC) 2013, 1135ā€“1138 (2013)

    Google ScholarĀ 

  8. Hansen, P.C., Oā€™Leary, D.P.: The use of the l-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14(6), 1487ā€“1503 (1993)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  9. Foster, K.R., Schwan, H.P.: Dielectric properties of tissues and biological materials: a critical review. Crit. Rev. Biomed. Eng. 17(1), 25ā€“104 (1988)

    Google ScholarĀ 

  10. Faes, T., Van Der Meij, H., De Munck, J., Heethaar, R.: The electric resistivity of human tissues (100 hz-10 mhz): a meta-analysis of review studies. Physiol. Meas. 20(4), R1 (1999)

    ArticleĀ  Google ScholarĀ 

  11. Gabriel, S., Lau, R., Gabriel, C.: The dielectric properties of biological tissues: Ii. measurements in the frequency range 10 hz to 20 ghz. Phys. Med. Biol. 41(11), 2251 (1996)

    ArticleĀ  Google ScholarĀ 

  12. Van Oosterom, A., Huiskamp, G.: The effect of torso inhomogeneities on body surface potentials quantified using tailored geometry. J. Electrocardiol. 22(1), 53ā€“72 (1989)

    ArticleĀ  Google ScholarĀ 

  13. Geneser, S.E., Kirby, R.M., MacLeod, R.S.: Application of stochastic finite element methods to study the sensitivity of ecg forward modeling to organ conductivity. Biomed. Eng. IEEE Trans. 55(1), 31ā€“40 (2008)

    ArticleĀ  Google ScholarĀ 

  14. Weber, F.M., Keller, D.U., Bauer, S., Seemann, G., Lorenz, C., Dossel, O.: Predicting tissue conductivity influences on body surface potentialsan efficient approach based on principal component analysis. Biomed. Eng. IEEE Trans. 58(2), 265ā€“273 (2011)

    ArticleĀ  Google ScholarĀ 

  15. Aboula\(\ddot{\iota }\)ch, R., Abda, A.B., Kallel, M., Bal, G., Jollivet, A., Bresson, X., Chan, T.F., Flenner, A., Hewer, G.A., Kenney, C.S., et al.: Missing boundary data reconstruction via an approximate optimal control. Inverse Prob. Imaging 2(4), 411ā€“426 (2008)

    Google ScholarĀ 

  16. Le MaĆ®tre, O.P., Reagan, M.T., Najm, H.N., Ghanem, R.G., Knio, O.M.: A stochastic projection method for fluid flow: Ii. random process. J. Comput. Phys. 181(1), 9ā€“44 (2002)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  17. Andrieux, S., Baranger, T., Abda, A.B.: Solving cauchy problems by minimizing an energy-like functional. Inverse Probl. 22(1), 115 (2006)

    ArticleĀ  MATHĀ  Google ScholarĀ 

Download references

Acknowledgments

We would like to thank the LIRIMA Laboratory which financially supported the teams ANO and EPICARD to perform this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Zemzemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zemzemi, N., Aboulaich, R., Fikal, N., Guarmah, E.E. (2015). Sensitivity of the Electrocardiography Inverse Solution to the Torso Conductivity Uncertainties. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2015. Lecture Notes in Computer Science(), vol 9126. Springer, Cham. https://doi.org/10.1007/978-3-319-20309-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20309-6_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20308-9

  • Online ISBN: 978-3-319-20309-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics