Skip to main content

The Background Effective Average Action Approach to Quantum Gravity

  • Chapter
  • First Online:
1st Karl Schwarzschild Meeting on Gravitational Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 170))

  • 949 Accesses

Abstract

We construct a consistent closure for the beta functions of the cosmological and Newton’s constants by evaluating the influence that the anomalous dimensions of the fluctuating metric and ghost fields have on their renormalization group flow. In this generalized framework we confirm the presence of an UV attractive non-Gaussian fixed-point, which we find characterized by real critical exponents. Our closure method is general and can be applied systematically to more general truncations of the gravitational effective average action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we follow the convention of [4] that a negative value for the critical exponent implies that the relative eigendirection is UV attractive.

References

  1. G. ’t Hooft, M.J.G. Veltman, Ann. Poincare Phys. Theor. A 20, 69 (1974)

    Google Scholar 

  2. S. Weinberg, in General Relativity, An Einstein Centenary Survey, eds. by S.W. Hawking, W. Israel (Cambridge University Press, 1979)

    Google Scholar 

  3. M. Reuter, Phys. Rev. D 57, 971 (1998). arXiv:hep-th/9605030

    Google Scholar 

  4. A. Codello, R. Percacci, C. Rahmede, Ann. Phys. 324, 414 (2009). arXiv:0805.2909 [hep-th]

  5. A. Codello, R. Percacci, C. Rahmede, Int. J. Mod. Phys. A 23, 143 (2008). arXiv:0705.1769 [hep-th]

    Google Scholar 

  6. P.F. Machado, F. Saueressig, Phys. Rev. D 77, 124045 (2008). arXiv:0712.0445 [hep-th]

  7. K. Falls, D.F. Litim, K. Nikolakopoulos, C. Rahmede. arXiv:1301.4191 [hep-th]

  8. M. Reuter, C. Wetterich, Nucl. Phys. B 417, 181 (1994)

    Article  ADS  Google Scholar 

  9. D. Dou, R. Percacci, Class. Quant. Grav. 15, 3449 (1998) arXiv:hep-th/9707239

  10. A. Codello, Ph.D. thesis, Johannes Gutenberg–Universität, Mainz (2010)

    Google Scholar 

  11. A. Codello. arXiv:1304.2059 [hep-th]

  12. A. Codello, G. D’Odorico, C. Pagani, in preparation

    Google Scholar 

  13. K. Groh, F. Saueressig, J. Phys. A 43, 365403 (2010). arXiv:1001.5032 [hep-th]

  14. D. Benedetti. arXiv:1301.4422 [hep-th]

  15. A. Eichhorn, H. Gies, Phys. Rev. D 81, 104010 (2010). arXiv:1001.5033 [hep-th]

  16. A. Codello, R. Percacci, Phys. Rev. Lett. 97, 221301 (2006). arXiv:hep-th/0607128

  17. D. Benedetti, P.F. Machado, F. Saueressig, Mod. Phys. Lett. A 24, 2233 (2009). arXiv:0901.2984 [hep-th]

    Google Scholar 

  18. D. Benedetti, P.F. Machado, F. Saueressig, Nucl. Phys. B 824, 168 (2010). arXiv:0902.4630 [hep-th]

  19. K. Groh, S. Rechenberger, F. Saueressig, O. Zanusso, PoS EPS -HEP2011 (2011), p. 124. arXiv:1111.1743 [hep-th]

  20. J.-E. Daum, M. Reuter, Phys. Lett. B 710, 215 (2012). arXiv:1012.4280 [hep-th]

  21. U. Harst, M. Reuter, JHEP 1205, 005 (2012). arXiv:1203.2158 [hep-th]

  22. P. Dona, R. Percacci, Phys. Rev. D 87, 045002 (2013). arXiv:1209.3649 [hep-th]

  23. J.-E. Daum, M. Reuter. arXiv:1301.5135 [hep-th]

  24. A. Satz, A. Codello, F.D. Mazzitelli, Phys. Rev. D 82, 084011 (2010). arXiv:1006.3808 [hep-th]

  25. A. Codello, R. Percacci, Phys. Lett. B 672, 280 (2009). arXiv:0810.0715 [hep-th]

  26. R. Percacci, O. Zanusso, Phys. Rev. D 81, 065012 (2010). arXiv:0910.0851 [hep-th]

  27. R. Flore, A. Wipf, O. Zanusso. arXiv:1207.4499 [hep-th]

  28. A. Codello, O. Zanusso, Phys. Rev. D 83, 125021 (2011). arXiv:1103.1089 [hep-th]

  29. A. Codello, N. Tetradis, O. Zanusso. arXiv:1212.4073 [hep-th]

  30. S. Rechenberger, F. Saueressig, JHEP 1303, 010 (2013). arXiv:1212.5114 [hep-th]

  31. E. Manrique, M. Reuter, Ann. Phys. 325, 785 (2010). arXiv:0907.2617 [gr-qc]

  32. E. Manrique, M. Reuter, F. Saueressig, Ann. Phys. 326, 463 (2011). arXiv:1006.0099 [hep-th]

  33. E. Manrique, M. Reuter, F. Saueressig, Ann. Phys. 326, 440 (2011). arXiv:1003.5129 [hep-th]

  34. I. Donkin, J. Pawlowski. arXiv:1203.4207 [hep-th]

  35. N. Christiansen, D.F. Litim, J.M. Pawlowski, A. Rodigast. arXiv:1209.4038 [hep-th]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio D’Odorico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

D’Odorico, G., Codello, A., Pagani, C. (2016). The Background Effective Average Action Approach to Quantum Gravity. In: Nicolini, P., Kaminski, M., Mureika, J., Bleicher, M. (eds) 1st Karl Schwarzschild Meeting on Gravitational Physics. Springer Proceedings in Physics, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-319-20046-0_27

Download citation

Publish with us

Policies and ethics