Skip to main content

Deep Neural Networks for Wind Energy Prediction

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9094))

Included in the following conference series:

Abstract

In this work we will apply some of the Deep Learning models that are currently obtaining state of the art results in several machine learning problems to the prediction of wind energy production. In particular, we will consider both deep, fully connected multilayer perceptrons with appropriate weight initialization, and also convolutional neural networks that can take advantage of the spatial and feature structure of the numerical weather prediction patterns. We will also explore the effects of regularization techniques such as dropout or weight decay and consider how to select the final predictive deep models after analyzing their training evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. European center for medium-range weather forecasts. http://www.ecmwf.int/

  2. Global forecast system. http://www.emc.ncep.noaa.gov/index.php?branch=gfs

  3. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.J., Bergeron, A., Bouchard, N., Bengio, Y.: Theano: new features and speed improvements. In: Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop (2012)

    Google Scholar 

  4. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems 19 (NIPS 2006), pp. 153–160 (2007). http://www.iro.umontreal.ca/~lisa/pointeurs/BengioNips2006All.pdf

  5. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expression compiler. In: Proceedings of the Python for Scientific Computing Conference (SciPy), June 2010. Oral Presentation

    Google Scholar 

  6. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3), 27:1–27:27 (2011). software available at http://www.csie.ntu.edu.tw/cjlin/libsvm

    Article  Google Scholar 

  7. Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flexible, high performance convolutional neural networks for image classification. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011, Barcelona, Catalonia, Spain, July 16–22, 2011, pp. 1237–1242 (2011). http://ijcai.org/papers11/Papers/IJCAI11-210.pdf

  8. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: JMLR W&CP: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2010), vol. 9, pp. 249–256, May 2010

    Google Scholar 

  9. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: JMLR W&CP: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2011), April 2011

    Google Scholar 

  10. Goodfellow, I.J., Warde-Farley, D., Lamblin, P., Dumoulin, V., Mirza, M., Pascanu, R., Bergstra, J., Bastien, F., Bengio, Y.: Pylearn2: a machine learning research library. arXiv preprint arXiv:1308.4214 (2013). http://arxiv.org/abs/1308.4214

  11. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. CoRR abs/1502.01852 (2015). http://arxiv.org/abs/1502.01852

  12. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006). http://www.sciencemag.org/content/313/5786/504.abstract

    Article  MATH  MathSciNet  Google Scholar 

  13. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.B., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. CoRR abs/1408.5093 (2014). http://arxiv.org/abs/1408.5093

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012). http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

  15. Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., Rodriguez-Sanchez, A., Wiskott, L.: Deep hierarchies in the primate visual cortex: What can we learn for computer vision? IEEE Transactions on Pattern Analysis and Machine Intelligence 35(8), 1847–1871 (2013)

    Article  Google Scholar 

  16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  17. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 9–50. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  18. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research 15, 1929–1958 (2014). http://jmlr.org/papers/v15/srivastava14a.html

    MATH  MathSciNet  Google Scholar 

  19. Sutskever, I., Martens, J., Dahl, G.E., Hinton, G.E.: On the importance of initialization and momentum in deep learning. In: Dasgupta, S., Mcallester, D. (eds.) Proceedings of the 30th International Conference on Machine Learning (ICML 2013), vol. 28, pp. 1139–1147. JMLR Workshop and Conference Proceedings, May 2013. http://jmlr.org/proceedings/papers/v28/sutskever13.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Díaz, D., Torres, A., Dorronsoro, J.R. (2015). Deep Neural Networks for Wind Energy Prediction. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2015. Lecture Notes in Computer Science(), vol 9094. Springer, Cham. https://doi.org/10.1007/978-3-319-19258-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19258-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19257-4

  • Online ISBN: 978-3-319-19258-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics