Skip to main content

Principal Sensitivity Analysis

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9077))

Included in the following conference series:

Abstract

We present a novel algorithm (Principal Sensitivity Analysis; PSA) to analyze the knowledge of the classifier obtained from supervised machine learning techniques. In particular, we define principal sensitivity map (PSM) as the direction on the input space to which the trained classifier is most sensitive, and use analogously defined \(k\)-th PSM to define a basis for the input space. We train neural networks with artificial data and real data, and apply the algorithm to the obtained supervised classifiers. We then visualize the PSMs to demonstrate the PSA’s ability to decompose the knowledge acquired by the trained classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1701–1708 (2014)

    Google Scholar 

  2. Horikawa, T., Tamaki, M., Miyawaki, Y., Kamitani, Y.: Neural decoding of visual imagery during sleep. Science 340, 639–642 (2013)

    Article  Google Scholar 

  3. Uberbacher, E.C., Mural, R.J.: Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proceedings of the National Academy of Sciences 88, 11261–11265 (1991)

    Article  Google Scholar 

  4. Hinton, G.E.: Dark knowledge. Presented as the keynote in BayLearn (2014)

    Google Scholar 

  5. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Muller, K.R.: How to explain individual classification decisions. The Journal of Machine Learning Research 11, 1803–1831 (2010)

    MATH  MathSciNet  Google Scholar 

  6. Rasmussen, P.M., Madsen, K.H., Lund, T.E., Hansen, L.K.: Visualization of nonlinear kernel models in neuroimaging by sensitivity maps. NeuroImage 55, 1120–1131 (2011)

    Article  Google Scholar 

  7. LaConte, S., Strother, S., Cherkassky, V., Anderson, J., Hu, X.: Support vector machines for temporal classification of block design fMRI data. NeuroImage 26, 317–329 (2005)

    Article  Google Scholar 

  8. Zurada, J.M., Malinowski, A., Cloete, I.: Sensitivity analysis for minimization of input data dimension for feedforward neural network. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), vol. 6, pp. 447–450 (1994)

    Google Scholar 

  9. Zurada, J.M., Malinowski, A., Usui, S.: Perturbation method for deleting redundant inputs of perceptron networks. Neurocomputing 14, 177–193 (1997)

    Article  Google Scholar 

  10. Kjems, U., Hansen, L.K., Anderson, J., Frutiger, S., Muley, S., Sidtis, J., Rottenberg, D., Strother, S.C.: The quantitative evaluation of functional neuroimaging experiments: mutual information learning curves. NeuroImage 15, 772–786 (2002)

    Article  Google Scholar 

  11. Jenatton, R., Obozinski, G., Bach, F.: Structured sparse principal component analysis. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), vol. 9, pp. 366–373 (2010)

    Google Scholar 

  12. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python. The Journal of Machine Learning Research 12, 2825–2830 (2012)

    Google Scholar 

  13. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 1–18 (2012)

  14. Yukinawa, N., Oba, S., Kato, K., Ishii, S.: Optimal aggregation of binary classifiers for multiclass cancer diagnosis using gene expression profiles. IEEE/ACM Transactions on Computational Biology and Bioinformatics 6, 333–343 (2009)

    Article  Google Scholar 

  15. Kontos, D., Megalooikonomou, V.: Fast and effective characterization for classification and similarity searches of 2D and 3D spatial region data. Pattern Recognition 38, 1831–1846 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotetsu Koyamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Koyamada, S., Koyama, M., Nakae, K., Ishii, S. (2015). Principal Sensitivity Analysis. In: Cao, T., Lim, EP., Zhou, ZH., Ho, TB., Cheung, D., Motoda, H. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2015. Lecture Notes in Computer Science(), vol 9077. Springer, Cham. https://doi.org/10.1007/978-3-319-18038-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18038-0_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18037-3

  • Online ISBN: 978-3-319-18038-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics