Skip to main content

Abstract

The chapter describes the development of aromatic poly(ether sulfone)s carrying main chain pyridine units as alternative to poly(benzimidazole) (PBI) polymer electrolytes for high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) applications operating at 180 °C. These polymeric materials present excellent thermal and oxidative stability both ex situ and in situ as well as high proton conductivities after doping with strong protic acids. The pathway from monomers’ design to polymerization conditions optimization and finally to membranes preparation and doping with phosphoric acid is analytically presented. Further structural and mechanical stabilization of such polyelectrolytes and their application in HT-PEMFCs operating above 180 °C even up to 220 °C has been achieved through cross-linking. The cross-linked materials’ superiority over linear analogues is depicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li QF, Jensen JO, Savinell RF et al (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477

    Article  Google Scholar 

  2. Bouchet R, Siebert E (1999) Proton conduction in acid doped polybenzimidazole. Solid State Ionics 118:287–299

    Article  Google Scholar 

  3. Kim SK, Kim TH, Ko T et al (2011) Cross-linked poly(2,5-benzimidazole) consisting of wholly aromatic groups for high-temperature PEM fuel cell applications. J Membr Sci 373:80–88

    Article  Google Scholar 

  4. Asensio JA, Borros S, Gomez-Romero P (2004) Proton-conducting membranes based on poly(2,5-benzimidazole) (ABPBI) and phosphoric acid prepared by direct acid casting. J Membr Sci 241:89–93

    Article  Google Scholar 

  5. Kim HJ, Cho SY, An SJ et al (2004) Synthesis of poly(2,5-benzimidazole) for use as a fuel-cell membrane. Macromol Rapid Commun 25:894–897

    Article  Google Scholar 

  6. Yu S, Benicewicz BC (2009) Synthesis and characterization of functionalized polybenzimidazoles for high temperature PEMFC’s. Macromolecules 42:8640–8648

    Article  Google Scholar 

  7. Gourdoupi N, Andreopoulou AK, Deimede V et al (2003) A novel proton conducting polyelectrolyte composed of an aromatic polyether containing main-chain pyridine units for fuel cells applications. Chem Mater 15:5044–5050

    Article  Google Scholar 

  8. Andreopoulou AK, Kallitsis JK (2002) From terphenyl-dendronized macromonomers to aromatic-aliphatic polyethers bearing two pendant dendrons per repeating unit. Macromolecules 35:5808

    Article  Google Scholar 

  9. Gourdoupi N, Papadimitriou K, Neophytides S et al (2008) New high temperature polymer electrolyte membranes. Influence of the chemical structure on their properties. Fuel Cells 8:200–208

    Article  Google Scholar 

  10. Pefkianakis EK, Deimede V, Daletou MK et al (2005) Novel polymer electrolyte membrane, containing pyridine and tetramethyl biphenyl units, for application in high temperature PEM fuel cells. Macromol Rapid Commun 26:1724–1728

    Article  Google Scholar 

  11. Geormezi M, Deimede V, Gourdoupi N et al (2008) Novel pyridine-based poly(ether sulfones) and their study in high temperature PEM fuel cells. Macromolecules 41:9051–9056

    Article  Google Scholar 

  12. Daletou MK, Geormezi M, Pefkianakis EK et al (2010) Fully aromatic copolyethers for high temperature polymer electrolyte membrane fuel cells. Fuel Cells 10:35–44

    Google Scholar 

  13. Daletou MK, Gourdoupi N, Kallitsis JK (2005) Proton conducting membranes based on PBI/polysulfone copolymer blends. J Membr Sci 252:115–122

    Article  Google Scholar 

  14. Hubner G, Roduner E (1999) EPR investigation of HO radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes. J Mater Chem 9:409–418

    Article  Google Scholar 

  15. Kerres J, Schönberger F, Chromik A et al (2008) Partially fluorinated arylene polyethers and their ternary blend membranes with PBI and H3PO4. Part I. Synthesis and characterisation of polymers and binary blend membranes. Fuel Cells 8:175–187

    Article  Google Scholar 

  16. Kallitsis JK, Geormezi M, Neophytides S (2009) Polymer electrolyte membranes for high temperature fuel cells based on aromatic polyethers bearing pyridine units. Polym Int 58:1226–1233

    Article  Google Scholar 

  17. Deimede V, Voyiatzis GA, Kallitsis JK et al (2000) Miscibility behavior of polybenzimidazole/sulfonated polysulfone blends for use in fuel cell applications. Macromolecules 33:7609–7617

    Article  Google Scholar 

  18. Geormezi M, Chochos CL, Gourdoupi N et al (2011) High performance polymer electrolytes based on main and side chain pyridine aromatic polyethers for high and medium temperature PEM fuel cells. J Power Sources 196:9382–9390

    Article  Google Scholar 

  19. Andreopoulou AK, Daletou MK, Kalamaras I et al (2012) Crosslinked or non-crosslinked aromatic (co)polymers as proton conductors for use in high temperature PEM fuel cells. US Patent Application No. 13367855/02.07.2012

    Google Scholar 

  20. Morfopoulou C, Andreopoulou AK, Kallitsis JK (2011) The effect of structural variations on aromatic polyethers for high temperature PEM fuel cells. J Polym Sci A Polym Chem 49:4325–4334

    Article  Google Scholar 

  21. Papadimitriou KD, Andreopoulou AK, Kallitsis JK (2010) Phosphonated fully aromatic polyethers for PEMFCs applications. J Polym Sci A Polym Chem 48:2817–2827

    Article  Google Scholar 

  22. Kalamaras I, Daletou MK, Gregoriou VG et al (2011) Sulfonated aromatic polyethers containing pyridine units as electrolytes for high temperature fuel cells. Fuel Cells 11:921–931

    Article  Google Scholar 

  23. Voege A, Deimede VA, Kallitsis JK (2012) Side chain crosslinking of aromatic polyethers for high temperature polymer electrolyte membrane fuel cell applications. J Polym Sci A Polym Chem 50:207–216

    Article  Google Scholar 

  24. Papadimitriou KD, Paloukis F, Neophytides SG et al (2011) Cross-linking of side chain unsaturated aromatic polyethers for high temperature polymer electrolyte membrane fuel cell applications. Macromolecules 44:4942–4951

    Article  Google Scholar 

  25. Papadimitriou KD, Geormezi M, Neophytides SG et al (2013) Covalent cross-linking in phosphoric acid of pyridine based aromatic polyethers bearing side double bonds for use in high temperature polymer electrolyte membrane fuel cells. J Membr Sci 433:1–9

    Article  Google Scholar 

  26. Kalamaras I, Daletou MK, Neophytides SG et al (2012) Thermal crosslinking of aromatic polyethers bearing pyridine groups for use as high temperature polymer electrolytes. J Membr Sci 415–416:42–50

    Article  Google Scholar 

  27. Morfopoulou CI, Andreopoulou AK, Daletou MK et al (2013) Cross-linked high temperature polymer electrolytes through oxadiazole bond formation and their applications in HT PEM fuel cells. J Mater Chem A 1:1613–1622

    Article  Google Scholar 

  28. Hsiao SH, Chiou JH (2001) Aromatic poly(1,3,4-oxadiazole)s and poly(amide-1,3,4-oxadiazole)s containing ether sulfone linkages. J Polym Sci A Polym Chem 39:2271–2286

    Article  Google Scholar 

  29. Higashi F, Ogata SI, Aoki Y (1982) High-molecular-weight poly(p-phenyleneterephthalamide) by the direct polycondensation reaction with triphenyl phosphate. J Polym Sci Polym Chem Ed 20:2081–2087

    Article  Google Scholar 

  30. Huisgen R, Sauer J, Sturm HJ (1958) Acylierung 5-substitutierter Tetrazole zu 1.3.4-Oxdiazolen. Angew Chem 70:272–273

    Article  Google Scholar 

  31. Huisgen R, Sauer J, Sturm HJ et al (1960) Ringöffnungen der Azole, II. Die Bildung von 1.3.4-Oxdiazolen bei der Acylierung 5-substituierter Tetrazole. Chem Ber 93:2106–2124

    Article  Google Scholar 

  32. Zaidi SMJ, Chen SF, Mikhailenko SD et al (2000) Proton conducting membranes based on polyoxadiazoles. J New Mater Electrochem Syst 3:27–32

    Google Scholar 

  33. Hibsham C, Cornelius CJ, Marand E (2003) The gas separation effects of annealing polyimide-organosilicate hybrid membranes. J Membr Sci 211:25–40

    Article  Google Scholar 

  34. Wind JD, Bickel CS, Paul RD et al (2003) Solid-state covalent cross-linking of polyimide membranes for carbon dioxide plasticization reduction. Macromolecules 36:1882–1888

    Article  Google Scholar 

  35. Matyjaszewski K (ed) (1996) Cationic polymerizations: mechanisms, synthesis, and applications. Marcel Dekker, New York

    Google Scholar 

  36. Daletou MK, Kallitsis JK, Voyatzis G et al (2009) The interaction of water vapors with H3PO4 imbibed electrolyte based on PBI/polysulfone copolymer blends. J Membr Sci 326:76–83

    Article  Google Scholar 

  37. Daletou MK, Geormezi M, Vogli E et al (2014) The interaction of H3PO4 and steam with PBI and TPS polymeric membranes. A TGA and Raman study. J Mater Chem A 2:1117–1127

    Article  Google Scholar 

  38. Bhatnagar A, Sharma PK, Kumar N (2011) A review on “Imidazoles”: their chemistry and pharmacological potentials. Int J PharmTech Res 3:268–282

    Google Scholar 

  39. Ma YL, Wainright JS, Litt MH et al (2004) Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells. J Electrochem Soc 151:A8–A16

    Article  Google Scholar 

  40. He R, Che Q, Sun B (2008) The acid doping behavior of polybenzimidazole membranes in phosphoric acid for proton exchange membrane fuel cells. Fiber Polym 9:679–684

    Article  Google Scholar 

  41. Schechter A, Savinell RF (2002) Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells. Solid State Ionics 147:181–187

    Article  Google Scholar 

  42. Daletou MK, Kallitsis J, Neophytides S (2011) Materials, proton conductivity and electrocatalysis in high temperature PEM fuel cells. In: Vayenas C (ed) Interfacial phenomena in electrochemistry, vol 51, Modern aspects of electrochemistry. Springer, New York, pp 301–368

    Chapter  Google Scholar 

  43. Wainright JS, Wang JT, Weng D et al (1995) Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electrochem Soc 142:L121–L123

    Article  Google Scholar 

  44. Samms SR, Wasmus S, Savinell RF (1996) Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments. J Electrochem Soc 143:1225–1232

    Article  Google Scholar 

  45. Kreuer KD, Paddison SJ, Spohr E et al (2004) Transport in proton conductors for fuel-cell applications: simulations, elementary reactions and phenomenology. Chem Rev 104:4637–4678

    Article  Google Scholar 

  46. He R, Li Q, Xiao G et al (2003) A study of water adsorption and desorption by a PBI-H3PO4 membrane electrode assembly. J Membr Sci 226:169–184

    Article  Google Scholar 

  47. Lobato J, Cañizares P, Rodrigo M et al (2007) PBI-based polymer electrolyte membranes fuel cells: temperature effects on cell performance and catalyst stability. Electrochim Acta 52:3910–3920

    Article  Google Scholar 

  48. Galbiati S, Baricci A, Casalegno A et al (2012) Experimental study of water transport in a polybenzimidazole-based high temperature PEMFC. Int J Hydrogen Energy 37:2462–2469

    Article  Google Scholar 

  49. Li Q, He R, Jensen JO et al (2004) PBI-based polymer membranes for high temperature fuel cells—preparation, characterization and fuel cell demonstration. Fuel Cells 4:147–159

    Article  Google Scholar 

  50. Gu T, Shimpalee S, Van Zee JW et al (2010) A study of water adsorption and desorption by a PBI-H3PO4 membrane electrode assembly. J Power Sources 195:8194–8197

    Article  Google Scholar 

  51. Schmidt TJ, Baurmeister J (2008) Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells. J Power Sources 176:428–434

    Article  Google Scholar 

  52. Schechter A, Savinell RF, Wainright JS et al (2009) 1H and 31P NMR study of phosphoric acid-doped polybenzimidazole under controlled water activity. J Electrochem Soc 156:B283–B290

    Article  Google Scholar 

  53. Li Q, He R, Berg RW et al (2004) A study of water adsorption and desorption by a PBI-H3PO4 membrane electrode assembly. Solid State Ionics 168:177–185

    Article  Google Scholar 

  54. Li Q, Hjuler HA, Bjerrum NJ (2001) Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications. J Appl Electrochem 31:773–779

    Article  Google Scholar 

  55. Lister S, McLean G (2004) PEM fuel cell electrodes. J Power Sources 130:61–76

    Article  Google Scholar 

  56. Daletou MK, Paloukis F, Stefopoulos A (2009) Pt/modified MWNT as electrocatalysts for high temperature Fuel Cells. ECS Trans 25:1915–1924

    Article  Google Scholar 

  57. Orfanidi A, Daletou MK, Neophytides S (2011) Preparation and characterization of Pt on modified multi-wall carbon nanotubes to be used as electrocatalysts for high temperature fuel cell applications. Appl Catal B Environ 106:379–389

    Article  Google Scholar 

  58. Orfanidi A, Daletou MK, Sygellou L et al (2013) The role of phosphoric acid in the anodic electrocatalytic layer in high temperature PEM fuel cells. J Appl Electrochem 43:1101–1116

    Article  Google Scholar 

  59. Avgouropoulos G, Papavasiliou J, Daletou MK et al (2009) Reforming methanol to electricity in a high temperature PEM fuel cell. Appl Catal B Environ 90:628–632

    Article  Google Scholar 

  60. Advanced Energy Technologies S.A.—Advent S.A. http://www.advent-energy.com/

  61. Schmittinger W, Vahidi A (2008) Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells. J Power Sources 180:1–14

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from European Commission and from the Fuel Cell and Hydrogen Joint Undertaking (FCH JU) is greatly acknowledged. The authors are also indebted to Advent SA personnel for their collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joannis K. Kallitsis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kallitsis, J.K., Andreopoulou, A.K., Daletou, M., Neophytides, S. (2016). Pyridine Containing Aromatic Polyether Membranes. In: Li, Q., Aili, D., Hjuler, H., Jensen, J. (eds) High Temperature Polymer Electrolyte Membrane Fuel Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-17082-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17082-4_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17081-7

  • Online ISBN: 978-3-319-17082-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics