Skip to main content

On the Eigenvalues of a Biharmonic Steklov Problem

  • Conference paper
Integral Methods in Science and Engineering

Abstract

We consider an eigenvalue problem for the biharmonic operator with Steklov-type boundary conditions. We obtain it as a limiting Neumann problem for the biharmonic operator in a process of mass concentration at the boundary. We study the dependence of the spectrum upon the domain. We show analyticity of the symmetric functions of the eigenvalues under isovolumetric perturbations and prove that balls are critical points for such functions under measure constraint. Moreover, we show that the ball is a maximizer for the first positive eigenvalue among those domains with a prescribed fixed measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C., (1964)

    Google Scholar 

  2. Arrieta, J.M., Jiménez-Casas, A., Rodríguez-Bernal, A.: Flux terms and Robin boundary conditions as limit of reactions and potentials concentrating in the boundary. Rev. Mat. Iberoam. 24, no. 1, 183–211 (2008)

    Google Scholar 

  3. Arrieta, J.M., Lamberti, P.D.: Spectral stability results for higher-order operators under perturbations of the domain. C. R. Math. Acad. Sci. Paris 351, no. 19–20, pp 725–730 (2013)

    Google Scholar 

  4. Ashbaugh, M.S., Benguria, R.D.: On Rayleigh’s conjecture for the clamped plate and its generalization to three dimensions. Duke Math. J. 78, no. 1, 17 (1995)

    Google Scholar 

  5. Bandle, C.: Isoperimetric inequalities and applications. Pitman advanced publishing program, monographs and studies in mathematics, 7 (1980)

    Google Scholar 

  6. Betta, F., Brock, F., Mercaldo, A., Posteraro, M.R.: A weighted isoperimetric inequality and applications to symmetrization. J. Inequal. Appl., 4, no. 3, pp 215–240 (1999)

    Google Scholar 

  7. Bucur, D., Ferrero, A., Gazzola, F.: On the first eigenvalue of a fourth order Steklov problem. Calculus of Variations and Partial Differential Equations, 35, pp 103–131 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Buoso, D., Lamberti, P.D.: Eigenvalues of polyharmonic operators on variable domains. ESAIM: COCV, 19, pp 1225–1235 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Buoso, D., Lamberti, P.D.: Shape deformation for vibrating hinged plates. Mathematical Methods in the Applied Sciences, 37, pp 237–244 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Buoso, D., Provenzano, L.: A few shape optimization results for a Biharmonic Steklov problem. J. Differential Equations, (2015). http://dx.doi.org/10.1016/j.jde.2015.03.013.

  11. Chasman, L.M.: An isoperimetric inequality for fundamental tones of free plates. Comm. Math. Phys., 303, no. 2, pp 421–449 (2011)

    Google Scholar 

  12. Henrot, A.: Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics, Birkhäuser Verlag, Basel, (2006)

    MATH  Google Scholar 

  13. Hile, G.N., Xu, Z.Y.: Inequalities for sums of reciprocals of eigenvalues. J. Math. Anal. Appl., 180 no. 2, pp 412–430 (1993)

    Google Scholar 

  14. Lamberti, P.D.: Steklov-type eigenvalues associated with best Sobolev trace constants: domain perturbation and overdetermined systems. Complex Var. Elliptic Equ. 59 no. 3, pp 309–323 (2014)

    Google Scholar 

  15. Lamberti, P.D., Lanza de Cristoforis, M.: A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Dirichlet problem for the Laplace operator. J. Nonlinear Convex Anal, 5, no. 1, pp 19–42 (2004)

    Google Scholar 

  16. Lamberti, P.D., Lanza de Cristoforis, M.: Critical points of the symmetric functions of the eigenvalues of the Laplace operator and overdetermined problems. J. Math. Soc. Japan, 58, no. 1, pp 231–245 (2006)

    Google Scholar 

  17. Lamberti, P.D., Lanza de Cristoforis, M.: A real analyticity result for symmetric functions of the eigenvalues of a domain-dependent Neumann problem for the Laplace operator. Mediterr. J. Math., 4, no. 4, pp 435–449 (2007)

    Google Scholar 

  18. Lamberti, P.D., Provenzano, L.: Viewing the Steklov eigenvalues of the Laplace operator as critical Neumann eigenvalues. Current Trends in Analysis and its Applications, Proceedings of the 9th ISAAC Congress, Kraków 2013 (2015)

    Google Scholar 

  19. Nadirashvili, N.S.: Rayleigh’s conjecture on the principal frequency of the clamped plate. Arch. Rational Mech. Anal., 129, no. 1, pp 1–10 (1995)

    Google Scholar 

  20. Stekloff, W.: Sur les problémes fondamentaux de la physique mathèmatique (suite et fin). Ann. Sci. École Norm. Sup., 3, 19, pp 455–490 (1902)

    Google Scholar 

  21. Weinstock, R.: Calculus of variations with applications to physics and engineering. McGraw-Hill Book Company Inc., New York-Toronto-London (1952)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are deeply thankful to Prof. Pier Domenico Lamberti who suggested the problem, and also for many useful discussions. The authors acknowledge financial support from the research project ‘Singular perturbation problems for differential operators,’ Progetto di Ateneo of the University of Padova. The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Provenzano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Buoso, D., Provenzano, L. (2015). On the Eigenvalues of a Biharmonic Steklov Problem. In: Constanda, C., Kirsch, A. (eds) Integral Methods in Science and Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-16727-5_7

Download citation

Publish with us

Policies and ethics