Skip to main content

A Scalable Fluctuating Distance Field: An Application to Tumor Shape Analysis

  • Conference paper
Research in Shape Modeling

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 1))

  • 543 Accesses

Abstract

Tumor growth involves highly complicated processes and complex dynamics, which typically lead to deviation of tumor shape from a compact structure. In order to quantify the tumor shape variations in a follow-up scenario, a shape registration based on a scalable fluctuating shape field is described. In the earlier work of fluctuating distance fields (Tari and Genctav, J Math Imaging Vis 1–18, 2013; Tari, Fluctuating distance fields, parts, three-partite skeletons. In: Innovations for shape analysis. Springer, Berlin/New York, pp 439–466, 2013), the shape field consists of positive and negative values whose zero crossing separates the central and the peripheral volumes of a silhouette. We add a non-linear constraint upon the original fluctuating field idea in order to introduce a “fluctuation scale”, which indicates an assumption about peripherality. This provides the induction of an hierarchy hypothesis onto the field. When fixed, the field becomes robust for scale changes for analysis of correspondence. We utilize the scalable fluctuating field first in segmentation of the protruded regions in a tumor, which are significant for the radiotherapy planning and assessment procedures. Furthermore, the unique information encoded in the shape field is utilized as an underlying shape representation for follow-up registration applications. The representation performance of the scalable field for a fixed ‘fluctuation scale’ is demonstrated in comparison to the conventional distance transform approach for the registration problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attene, M., Katz, S., Mortara, M., Patané, G., Spagnuolo, M., Tal, A.: Mesh segmentation-a comparative study. In: IEEE International Conference on Shape Modeling and Applications, SMI 2006, Matsushima, p. 7. IEEE (2006)

    Google Scholar 

  2. August, J., Siddiqi, K., Zucker, S.W.: Ligature instabilities in the perceptual organization of shape. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, vol. 2. IEEE (1999)

    Google Scholar 

  3. Bai, X., Latecki, L.J.: Path similarity skeleton graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1282–1292 (2008)

    Article  Google Scholar 

  4. Biederman, I.: Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94, 115 (1987)

    Article  Google Scholar 

  5. Blum, H., Nagel, R.N.: Shape description using weighted symmetric axis features. Pattern Recognit. 10(3), 167–180 (1978)

    Article  MATH  Google Scholar 

  6. Blum, H., et al.: A transformation for extracting new descriptors of shape. Models Percept. Speech Vis. Form 19(5), 362–380 (1967)

    Google Scholar 

  7. Brady, M., Asada, H.: Smoothed local symmetries and their implementation. Int. J. Robot. Res. 3(3), 36–61 (1984)

    Article  Google Scholar 

  8. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Computer Vision-ECCV 2004, Prague, pp. 25–36 (2004)

    Google Scholar 

  9. Burbeck, C.A., Pizer, S.M.: Object representation by cores: identifying and representing primitive spatial regions. Vis. Res. 35(13), 1917–1930 (1995)

    Article  Google Scholar 

  10. Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3d mesh segmentation. ACM Trans. Graph. (TOG) 28, 73 (2009). ACM

    Google Scholar 

  11. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: a new approach to computing distance based on heat flow. ACM Trans. Graph. (TOG) 32(5), 152 (2013)

    Google Scholar 

  13. De Goes, F., Goldenstein, S., Velho, L.: A hierarchical segmentation of articulated bodies. Comput. Graph. Forum 27, 1349–1356 (2008). Wiley Online Library

    Google Scholar 

  14. Do Carmo, M.P., Do Carmo, M.P.: Differential Geometry of Curves and Surfaces, vol. 2. Prentice-Hall, Englewood Cliffs (1976)

    Google Scholar 

  15. Feldman, J., Singh, M.: Bayesian estimation of the shape skeleton. Proc. Natl. Acad. Sci. 103(47), 18,014–18,019 (2006)

    Google Scholar 

  16. Golovinskiy, A., Funkhouser, T.: Consistent segmentation of 3d models. Comput. Graph. 33(3), 262–269 (2009)

    Article  Google Scholar 

  17. Hamamci, A., Kucuk, N., Karaman, K., Engin, K., Unal, G.: Tumor-cut: segmentation of brain tumors on contrast enhanced mr images for radiosurgery applications. IEEE Trans. Med. Imaging 31(3), 790–804 (2012)

    Article  Google Scholar 

  18. Hoffman, D.D., Richards, W.A.: Parts of recognition. Cognition 18, 65–96 (1984)

    Article  Google Scholar 

  19. Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  20. Joshi, S., Pizer, S., Fletcher, P.T., Yushkevich, P., Thall, A., Marron, J.: Multiscale deformable model segmentation and statistical shape analysis using medial descriptions. IEEE Trans. Med. Imaging 21(5), 538–550 (2002)

    Article  Google Scholar 

  21. Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3d mesh segmentation and labeling. ACM Trans. Graph. (TOG) 29(4), 102 (2010)

    Google Scholar 

  22. Khan, F.M.: The Physics of Radiation Therapy. Lippincott Williams & Wilkins, Philadelphia/London (2009)

    Google Scholar 

  23. Konukoglu, E., Pennec, X., Clatz, O., Ayache, N.: Tumor growth modeling in oncological image analysis. In: Bankman, I. (ed.) Handbook of Medical Image Processing and Analysis – New edition, chap. 18, pp. 297–307. Burlington, San Diego, London (2008)

    Google Scholar 

  24. Lai, Y.K., Zhou, Q.Y., Hu, S.M., Wallner, J., Pottmann, D., et al.: Robust feature classification and editing. IEEE Trans. Vis. Comput. Graph. 13(1), 34–45 (2007)

    Google Scholar 

  25. Liu, R., Zhang, H., Shamir, A., Cohen-Or, D.: A part-aware surface metric for shape analysis. Comput. Graph. Forum 28, 397–406 (2009). Wiley Online Library

    Google Scholar 

  26. Macrini, D., Dickinson, S., Fleet, D., Siddiqi, K.: Bone graphs: medial shape parsing and abstraction. Comput. Vis. Image Underst. 115(7), 1044–1061 (2011)

    Article  Google Scholar 

  27. Meyer, F.: Topographic distance and watershed lines. Signal Process. 38(1), 113–125 (1994)

    Article  MATH  Google Scholar 

  28. Mi, X., DeCarlo, D.: Separating parts from 2d shapes using relatability. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, Rio de Janeiro, pp. 1–8. IEEE (2007)

    Google Scholar 

  29. Paragios, N., Rousson, M., Ramesh, V.: Non-rigid registration using distance functions. Comput. Vis. Image Underst. 89(2), 142–165 (2003)

    Article  MATH  Google Scholar 

  30. Pizer, S.M., Fritsch, D.S., Yushkevich, P.A., Johnson, V.E., Chaney, E.L.: Segmentation, registration, and measurement of shape variation via image object shape. IEEE Trans. Med. Imaging 18(10), 851–865 (1999)

    Article  Google Scholar 

  31. Pottmann, H., Steiner, T., Hofer, M., Haider, C., Hanbury, A.: The isophotic metric and its application to feature sensitive morphology on surfaces. In: Computer Vision-ECCV 2004, Prague, pp. 18–23 (2004)

    Google Scholar 

  32. Shaked, D., Bruckstein, A.M.: Pruning medial axes. Comput. Vis. Image Underst. 69(2), 156–169 (1998)

    Article  Google Scholar 

  33. Shamir, A.: A survey on mesh segmentation techniques. Comput. Graph. Forum 27, 1539–1556 (2008). Wiley Online Library

    Google Scholar 

  34. Styner, M., Gerig, G., Lieberman, J., Jones, D., Weinberger, D.: Statistical shape analysis of neuroanatomical structures based on medial models. Med. Image Anal. 7(3), 207–220 (2003)

    Article  Google Scholar 

  35. Styner, M., Lieberman, J.A., Pantazis, D., Gerig, G.: Boundary and medial shape analysis of the hippocampus in schizophrenia. Med. Image Anal. 8(3), 197–203 (2004)

    Article  Google Scholar 

  36. Tari, S.: Fluctuating distance fields, parts, three-partite skeletons. In: Innovations for Shape Analysis, pp. 439–466. Springer, Berlin/Heidelberg (2013)

    Google Scholar 

  37. Tari, S., Genctav, M.: From a non-local ambrosio-tortorelli phase field to a randomized part hierarchy tree. J. Math. Imaging Vis. 49(1), 69–86. Springer (2014)

    Google Scholar 

  38. Tari, Z., Shah, J., Pien, H.: Extraction of shape skeletons from grayscale images. Comput. Vis. Image Underst. 66(2), 133–146 (1997)

    Article  Google Scholar 

  39. Tombropoulos, R., Schweikard, A., Latombe, J.C., Adler, J.: Treatment planning for image-guided robotic radiosurgery. In: Computer Vision, Virtual Reality and Robotics in Medicine, pp. 131–137. Springer, Berlin/Heidelberg (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Alp Guler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland & The Association for Women in Mathematics

About this paper

Cite this paper

Guler, R.A., Hamamci, A., Unal, G. (2015). A Scalable Fluctuating Distance Field: An Application to Tumor Shape Analysis. In: Leonard, K., Tari, S. (eds) Research in Shape Modeling. Association for Women in Mathematics Series, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-16348-2_2

Download citation

Publish with us

Policies and ethics