Skip to main content

Abstract

We briefly survey the recent developments in adaptive finite element approximations of eigenvalue problems arising from elliptic, second-order, selfadjoint partial differential equations (PDEs). The main goal of this paper is to present the variety of subjects and corresponding results contributing to this very complex and broad area of research, and to provide a reader with a relevant sources of information for further investigations.

What we have done for ourselves alone dies with us; what we have done for others and the world remains and is immortal

Albert Pike

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ainsworth, M., Oden, J.T.: A posteriori error estimators for second order elliptic systems. II. An optimal order process for calculating self-equilibrating fluxes. Comput. Math. Appl. 26(9), 75–87 (1993)

    MATH  MathSciNet  Google Scholar 

  4. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. Wiley-Interscience [Wiley], New York (2000)

    Google Scholar 

  5. Arioli, M.: A stopping criterion for the conjugate gradient algorithm in a finite element method framework. Numer. Math. 97(1), 1–24 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Arioli, M., Liesen, J., Międlar, A., Strakoš, Z.: Interplay between discretization and algebraic computation in adaptive numerical solution of elliptic PDE problems. GAMM-Mitt. 36(1), 102–129 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Arioli, M., Noulard, E., Russo, A.: Stopping criteria for iterative methods: applications to PDE’s. Calcolo 38(2), 97–112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Armentano, M.G., Durán, R.G.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. Electron. Trans. Numer. Anal. 17, 93–101 (electronic) (2004)

    Google Scholar 

  9. Arnold, D.N., Babuška, I., Osborn, J.: Selection of finite element methods. In: Atluri, S.N., Gallagher, R.H., Zienkiewicz, O.C. (eds.) Hybrid and Mixed Finite Element Methods (Atlanta, 1981), chapter 22, pp. 433–451. Wiley-Interscience [Wiley], New York (1983)

    Google Scholar 

  10. Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1970/1971)

    Google Scholar 

  11. Babuška, I., Aziz, A.K.: Survey lectures on the mathematical foundations of the finite element method. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Proceedings of a Symposium Held at the University of Maryland, Baltimore, 1972), pp. 1–359. Academic, New York (1972). With the collaboration of G. Fix and R. B. Kellogg

    Google Scholar 

  12. Babuška, I., Osborn, J.E.: Estimates for the errors in eigenvalue and eigenvector approximation by Galerkin methods, with particular attention to the case of multiple eigenvalues. SIAM J. Numer. Anal. 24(6), 1249–1276 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Babuška, I., Osborn, J.E.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52(186), 275–297 (1989)

    Article  MATH  Google Scholar 

  14. Babuška, I., Osborn, J.E.: Eigenvalue Problems. Volume II of Handbook of Numerical Analysis. North Holland, Amsterdam (1991)

    Google Scholar 

  15. Babuška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15(4), 736–754 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  16. Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2001)

    Google Scholar 

  17. Babuška, I., Whiteman, J.R., Strouboulis, T.: Finite Elements – An Introduction to the Method and Error Estimation. Oxford Press, New York (2011)

    MATH  Google Scholar 

  18. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2003)

    Book  MATH  Google Scholar 

  19. Bank, R.E., Scott, L.R.: On the conditioning of finite element equations with highly refined meshes. SIAM J. Numer. Anal. 26(6), 1383–1394 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bank, R.E., Smith, R.K.: A posteriori error estimates based on hierarchical bases. SIAM J. Numer. Anal. 30(4), 921–935 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Bank, R.E., Weiser, A.: Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44(170), 283–301 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  22. Becker, R., Johnson, C., Rannacher, R.: Adaptive error control for multigrid finite element methods. Computing 55(4), 271–288 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Boffi, D., Brezzi, F., Gastaldi, L.: On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comput. 69(229), 121–140 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Boffi, D., Gardini, F., Gastaldi, L.: Some remarks on eigenvalue approximation by finite elements. In: Blowey, J., Jensen, M. (eds.) Frontiers in Numerical Analysis – Durham 2010. Volume 85 of Springer Lecture Notes in Computational Science and Engineering, pp. 1–77. Springer, Heidelberg (2012)

    Google Scholar 

  28. Bradbury, W.W., Fletcher, R.: New iterative methods for solution of the eigenproblem. Numer. Math. 9, 259–267 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  29. Braess, D.: Finite Elements, 3rd edn. Cambridge University Press, Cambridge (2007). Theory, Fast Solvers, and Applications in Elasticity Theory. Translated from the German by Larry L. Schumaker

    Google Scholar 

  30. Bramble, J.H., Pasciak, J.E., Knyazev, A.V.: A subspace preconditioning algorithm for eigenvector/eigenvalue computation. Adv. Comput. Math. 6(2), 159–189 (1997) (1996)

    Google Scholar 

  31. Brenner, S.C., Carstensen, C.: Finite element methods. In: Stein, E., de Borst, R., Huges, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. I, pp. 73–114. Wiley, New York (2004)

    Google Scholar 

  32. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Volume 15 of Texts in Applied Mathematics, 3rd edn. Springer, New York (2008)

    Google Scholar 

  33. Carstensen, C.: All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable. Math. Comput. 73(247), 1153–1165 (electronic) (2004)

    Google Scholar 

  34. Carstensen, C.: Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis. ZAMM Z. Angew. Math. Mech. 84(1), 3–21 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Carstensen, C., Feischl, M., Page, M., Praetorius, D.: Axioms of adaptivity. Comput. Math. Appl. 67(6), 1195–1253 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Carstensen, C., Funken, S.A.: Constants in Clément-interpolation error and residual based a posteriori error estimates in finite element methods. East-West J. Numer. Math. 8(3), 153–175 (2000)

    MATH  MathSciNet  Google Scholar 

  37. Carstensen, C., Funken, S.A.: Fully reliable localized error control in the FEM. SIAM J. Sci. Comput. 21(4), 1465–1484 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  38. Carstensen, C., Gedicke, J.: An oscillation-free adaptive FEM for symmetric eigenvalue problems. Numer. Math. 118(3), 401–427 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  39. Carstensen, C., Gedicke, J.: An adaptive finite element eigenvalue solver of asymptotic quasi-optimal computational complexity. SIAM J. Numer. Anal. 50(3), 1029–1057 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  40. Carstensen, C., Gedicke, J.: Guaranteed lower bounds for eigenvalues. Math. Comput. 83(290), 2605–2629 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  41. Carstensen, C., Gedicke, J., Mehrmann, V., Międlar, A.: An adaptive homotopy approach for non-selfadjoint eigenvalue problems. Numer. Math. 119(3), 557–583 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  42. Carstensen, C., Merdon, C.: Estimator competition for Poisson problems. J. Comput. Math. 28(3), 309–330 (2010)

    MATH  MathSciNet  Google Scholar 

  43. Chatelin, F.: Spectral Approximation of Linear Operators. Computer Science and Applied Mathematics. Academic [Harcourt Brace Jovanovich Publishers], New York (1983). With a foreword by P. Henrici, With solutions to exercises by Mario Ahués

    Google Scholar 

  44. Chatelin, F.: Spectral Approximation of Linear Operators. Volume 65 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011). Reprint of the 1983 original (Academic, New York)

    Google Scholar 

  45. Chatelin, F., Lemordant, M.J.: La méthode de Rayleigh-Ritz appliquée à des opérateurs différentiels elliptiques—ordres de convergence des éléments propres. Numer. Math. 23, 215–222 (1974/1975)

    Google Scholar 

  46. Cheddadi, I., Fučík, R., Prieto, M.I., Vohralík, M.: Computable a posteriori error estimates in the finite element method based on its local conservativity: improvements using local minimization. In: Dobrzynski, C., Frey, P., Pebay, Ph. (eds.) Pre and Post Processing in Scientific Computing (CEMRACS 2007), Luminy, 23rd July–31st August, 2007 (2007)

    Google Scholar 

  47. Chen, Z.: Finite Element Methods and Their Applications. Scientific Computation. Springer, Berlin (2005)

    MATH  Google Scholar 

  48. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002). Reprint of the 1978 original (North-Holland, Amsterdam)

    Google Scholar 

  49. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I. Interscience Publishers, New York (1953)

    Google Scholar 

  50. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7(R-3), 33–75 (1973)

    Google Scholar 

  51. Dai, X., Xu, J., Zhou, A.: Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110(3), 313–355 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  52. Deuflhard, P., Leinen, P., Yserentant, H.: Concepts of an adaptive hierarchical finite element code. IMPACT Comput. Sci. Eng. 1(1), 3–35 (1989)

    Article  MATH  Google Scholar 

  53. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  54. Durán, R.G., Padra, C., Rodríguez, R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 13(8), 1219–1229 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  55. Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation, 2nd edn. Oxford University Press, Oxford (2014)

    Google Scholar 

  56. Ern, A.A., Guermond, J.-L.: Theory and practice of finite elements. Volume 159 of Applied Mathematical Sciences. Springer, New York (2004)

    Google Scholar 

  57. Evans, L.C.: Partial Differential Equations. Volume 19 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  58. Ferraz-Leite, S., Ortner, C., Praetorius, D.: Convergence of simple adaptive Galerkin schemes based on h-h/2 error estimators. Numer. Math. 116(2), 291–316 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  59. Fix, G.J.: Eigenvalue approximation by the finite element method. Adv. Math. 10, 300–316 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  60. Gallistl, D.: Adaptive nonconforming finite element approximation of eigenvalue clusters. Comput. Methods Appl. Math. 14(4), 509–535 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  61. Gallistl, D.: An optimal adaptive FEM for eigenvalue clusters. Numer. Math. (2014). Accepted for publication

    Google Scholar 

  62. Garau, E.M., Morin, P., Zuppa, C.: Convergence of adaptive finite element methods for eigenvalue problems. Math. Models Methods Appl. Sci. 19(5), 721–747 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  63. Gedicke, J., Carstensen, C.: A posteriori error estimators for convection-diffusion eigenvalue problems. Comput. Methods Appl. Mech. Eng. 268, 160–177 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  64. Giani, S., Graham, I.G.: A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47(2), 1067–1091 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  65. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

    Google Scholar 

  66. Gockenbach, M.S.: Understanding and Implementing the Finite Element Method. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2006)

    Google Scholar 

  67. Gockenbach, M.S.: Partial Differential Equations, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011). Analytical and Numerical Methods

    Google Scholar 

  68. Godunov, S.K., Ogneva, V.V., Prokopov, G.P.: On the convergence of the modified method of steepest descent in the calculation of eigenvalues. Am. Math. Soc. Transl. Ser. 2 105, 111–116 (1976)

    MATH  Google Scholar 

  69. Grätsch, T., Bathe, K.-J.: A posteriori error estimation techniques in practical finite element analysis. Comput. Struct. 83(4–5), 235–265 (2005)

    Article  Google Scholar 

  70. Gratton, S., Mouffe, M., Toint, P.L.: Stopping rules and backward error analysis for bound-constrained optimization. Numer. Math. 119(1), 163–187 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  71. Grebenkov, D.S., Nguyen, B.-T.: Geometrical structure of Laplacian eigenfunctions. SIAM Rev. 55(4), 601–667 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  72. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston (1985)

    Google Scholar 

  73. Grossmann, C., Roos, H.-G.: Numerical treatment of partial differential equations. Universitext. Springer, Berlin (2007). Translated and revised from the 3rd (2005) German edition by Martin Stynes

    Google Scholar 

  74. Grubišić, L., Ovall, J.S.: On estimators for eigenvalue/eigenvector approximations. Math. Comput. 78(266), 739–770 (2009)

    MATH  Google Scholar 

  75. Grubišić, L., Veselić, K.: On Ritz approximations for positive definite operators. I. Theory. Linear Algebra Appl. 417(2–3), 397–422 (2006)

    MATH  Google Scholar 

  76. Hackbusch, W.: On the computation of approximate eigenvalues and eigenfunctions of elliptic operators by means of a multi-grid method. SIAM J. Numer. Anal. 16(2), 201–215 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  77. Hackbusch, W.: Elliptic Differential Equations. Volume 18 of Springer Series in Computational Mathematics. Springer, Berlin (1992). Translated from the author’s revision of the 1986 German original by Regine Fadiman and Patrick D. F. Ion

    Google Scholar 

  78. Hestenes, M.R., Karush, W.: Solutions of Ax = λ B x. J. Res. Nat. Bur. Stand. 47, 471–478 (1951)

    Google Scholar 

  79. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur. Stand. 49, 409–436 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  80. Hetmaniuk, U.L., Lehoucq, R.B.: Uniform accuracy of eigenpairs from a shift-invert Lanczos method. SIAM J. Matrix Anal. Appl. 28(4), 927–948 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  81. Heuveline, V., Rannacher, R.: A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15(1–4), 107–138 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  82. Johnson, C.: Numerical solution of partial differential equations by the finite element method. Dover, Mineola (2009). Reprint of the 1987 edition

    Google Scholar 

  83. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 edition

    Google Scholar 

  84. Knyazev, A.V.: A preconditioned conjugate gradient method for eigenvalue problems and its implementation in a subspace. In: Eigenwertaufgaben in Natur- und Ingenieurwissenschaften und ihre numerische Behandlung, Oberwolfach 1990. International Series of Numerical Mathematics, pp. 143–154. Birkhäuser, Basel (1991)

    Google Scholar 

  85. Knyazev, A.V.: New estimates for Ritz vectors. Math. Comput. 66(219), 985–995 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  86. Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal (block) preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  87. Knyazev, A.V., Argentati, M.E.: Rayleigh-Ritz majorization error bounds with applications to FEM. SIAM J. Matrix Anal. Appl. 31(3), 1521–1537 (2009)

    Article  MathSciNet  Google Scholar 

  88. Knyazev, A.V., Lashuk, I., Argentati, M.E., Ovchinnikov, E.: Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in hypre and PETSc. SIAM J. Sci. Comput. 25(5), 2224–2239 (2007)

    Article  MathSciNet  Google Scholar 

  89. Knyazev, A.V., Neymeyr, K.: A geometric theory for preconditioned inverse iteration. III: A short and sharp convergence estimate for generalized eigenvalue problems. Linear Algebra Appl. 358, 95–114 (2003)

    MATH  MathSciNet  Google Scholar 

  90. Knyazev, A.V., Osborn, J.E.: New a priori FEM error estimates for eigenvalues. SIAM J. Numer. Anal. 43(6), 2647–2667 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  91. Kolata, W.G.: Approximation in variationally posed eigenvalue problems. Numer. Math. 29(2), 159–171 (1977/1978)

    Google Scholar 

  92. Larson, M.G.: A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer. Anal. 38(2), 608–625 (2000)

    Google Scholar 

  93. Larson, M.G., Bengzon, F.: The Finite Element Method: Theory, Implementation, and Applications. Volume 10 of Texts in Computational Science and Engineering. Springer, Heidelberg (2013)

    Google Scholar 

  94. Larsson, S., Thomée, V.: Partial Differential Equations with Numerical Methods. Volume 45 of Texts in Applied Mathematics. Springer, Berlin (2003)

    Google Scholar 

  95. Lax, P.D., Milgram, A.N.: Parabolic equations. In: Bers, L., Bochner, S., John, F. (eds.) Contributions to the Theory of Partial Differential Equations. Annals of Mathematics Studies, no. 33, pp. 167–190. Princeton University Press, Princeton (1954)

    Google Scholar 

  96. Liu, H., Sun, J.: Recovery type a posteriori estimates and superconvergence for nonconforming FEM of eigenvalue problems. Appl. Math. Model. 33(8), 3488–3497 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  97. Mao, D., Shen, L., Zhou, A.: Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates. Adv. Comput. Math. 25(1–3), 135–160 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  98. Mehrmann, V., Międlar, A.: Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations. Numer. Linear Algebra Appl. 18(3), 387–409 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  99. Mehrmann, V., Schröder, C.: Nonlinear eigenvalue and frequency response problems in industrial practice. J. Math. Ind. 1, Art. 7, 18 (2011)

    Google Scholar 

  100. Meidner, D., Rannacher, R., Vihharev, J.: Goal-oriented error control of the iterative solution of finite element equations. J. Numer. Math. 17(2), 143–172 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  101. Międlar, A.: Functional perturbation results and the balanced AFEM algorithm for self-adjoint PDE eigenvalue problems. Preprint 817, DFG Research Center MATHEON, Berlin (2011)

    Google Scholar 

  102. Międlar, A.: Inexact Adaptive Finite Element Methods for Elliptic PDE Eigenvalue Problems. PhD thesis, Technische Universität Berlin (2011)

    Google Scholar 

  103. Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44(4), 631–658 (2002). Revised reprint of “Data oscillation and convergence of adaptive FEM” [SIAM J. Numer. Anal. 38(2), 466–488 (2000)]

    Google Scholar 

  104. Naga, A., Zhang, Z., Zhou, A.: Enhancing eigenvalue approximation by gradient recovery. SIAM J. Sci. Comput. 28(4), 1289–1300 (electronic) (2006)

    Google Scholar 

  105. Neymeyr, K.: A geometric theory for preconditioned inverse iteration. I: extrema of the rayleigh quotient. Linear Algebra Appl. 322, 61–85 (2001)

    MATH  MathSciNet  Google Scholar 

  106. Neymeyr, K.: A geometric theory for preconditioned inverse iteration. II: convergence estimates. Linear Algebra Appl. 331, 87–104 (2001)

    MathSciNet  Google Scholar 

  107. Neymeyr, K.: A geometric theory for preconditioned inverse iteration applied to a subspace. Math. Comput. 71(237), 197–216 (electronic) (2002)

    Google Scholar 

  108. Neymeyr, K.: A posteriori error estimation for elliptic eigenproblems. Numer. Linear Algebra Appl. 9(4), 263–279 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  109. Neymeyr, K.: A geometric theory for preconditioned inverse iteration. IV: on the fastest converegence cases. Linear Algebra Appl. 415, 114–139 (2006)

    MATH  MathSciNet  Google Scholar 

  110. Neymeyr, K.: A geometric convergence theory for the preconditioned steepest descent iteration. SIAM J. Numer. Anal. 50(6), 3188–3207 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  111. Neymeyr, K., Zhou, M.: The block preconditioned steepest descent iteration for elliptic operator eigenvalue problems. Electron. Trans. Numer. Anal. 41, 93–108 (2014)

    MATH  MathSciNet  Google Scholar 

  112. Nochetto, R.H.: Adaptive finite element methods for elliptic PDE. 2006 CNA Summer School, Probabilistic and Analytical Perpectives in Contemporary PDE (2006)

    Google Scholar 

  113. Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer, Berlin (2009)

    Chapter  Google Scholar 

  114. Nochetto, R.H., Veeser, A.: Primer of adaptive finite element methods. In: Naldi, G., Russo, G. (eds.) Multiscale and adaptivity: modeling, numerics and applications. Volume 2040 of Lecture Notes in Mathematics, pp. 125–225. Springer, Heidelberg (2012)

    Google Scholar 

  115. Nystedt, C.: A priori and a posteriori error estimates and adaptive finite element methods for a model eigenvalue problem. Technical Report 1995-05, Department of Mathematics, Chalmers University of Technology (1995)

    Google Scholar 

  116. Oden, J.T., Prudhomme, S.: Goal-oriented error estimation and adaptivity for the finite element method. Comput. Math. Appl. 41(5–6), 735–756 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  117. Quarteroni, A.: Numerical Models for Differential Problems. Volume 8 of MS&A. Modeling, Simulation and Applications, 2nd edn. Springer, Milan (2014). Translated from the fifth (2012) Italian edition by Silvia Quarteroni

    Google Scholar 

  118. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics. Springer, Berlin (2008)

    MATH  Google Scholar 

  119. Rannacher, R.: Error control in finite element computations. An introduction to error estimation and mesh-size adaptation. In: Bulgak, H., Zenger, Ch. (eds.) Error Control and Adaptivity in Scientific Computing (Antalya, 1998). Volume 536 of NATO Science, Series C, Mathematical and Physical Sciences, pp. 247–278. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  120. Rannacher, R., Westenberger, A., Wollner, W.: Adaptive finite element solution of eigenvalue problems: balancing of discretization and iteration error. J. Numer. Math. 18(4), 303–327 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  121. Raviart, P.-A., Thomas, J.-M.: Introduction à l’Analyse Numérique des Équations aux Dérivées Partielles. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1983)

    MATH  Google Scholar 

  122. Reddy, B.D.: Introductory Functional Analysis. Volume 27 of Texts in Applied Mathematics. Springer, New York (1998). With applications to boundary value problems and finite elements

    Google Scholar 

  123. Repin, S.I.: A Posteriori Estimates for Partial Differential Equations. Volume 4 of Radon Series on Computational and Applied Mathematics. Walter de Gruyter GmbH & Co. KG, Berlin (2008)

    Google Scholar 

  124. Rohwedder, T., Schneider, R., Zeiser, A.: Perturbed preconditioned inverse iteration for operator eigenvalue problems with applications to adaptive wavelet discretization. Adv. Comput. Math. 34(1), 43–66 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  125. Saad, Y.: On the rates of convergence of the Lanczos and the block-Lanczos methods. SIAM J. Numer. Anal. 17(5), 687–706 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  126. Samokish, A.: The steepest descent method for an eigen value problem with semi-bounded operators. Izv. Vyssh. Uchebn. Zaved. Mat. 5, 105–114 (1958, in Russian)

    Google Scholar 

  127. Sauter, S.: Finite Elements for Elliptic Eigenvalue Problems: Lecture Notes for the Zürich Summerschool 2008. Preprint 12–08, Institut für Mathematik, Universität Zürich (2008). http://www.math.uzh.ch/compmath/fileadmin/math/preprints/12_08.pdf

  128. Šolín, P.: Partial Differential Equations and the Finite Element Method. Pure and Applied Mathematics (New York). Wiley-Interscience [Wiley], Hoboken (2006)

    Google Scholar 

  129. Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7(2), 245–269 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  130. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  131. Bui-Thanh, T., Ghattas, O., Demkowicz, L.: A relation between the discontinuous Petrov–Galerkin methods and the discontinuous galerkin method. ICES Report 11–45, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712

    Google Scholar 

  132. Vaĭnikko, G.M.: Asymptotic error bounds for projection methods in the eigenvalue problem. Ž. Vyčisl. Mat. i Mat. Fiz. 4, 405–425 (1964)

    Google Scholar 

  133. Vaĭnikko, G.M.: On the rate of convergence of certain approximation methods of galerkin type in eigenvalue problems. Izv. Vysš. Učebn. Zaved. Matematika 2, 37–45 (1966)

    Google Scholar 

  134. Veeser, A., Verfürth, R.: Explicit upper bounds for dual norms of residuals. SIAM J. Numer. Anal. 47(3), 2387–2405 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  135. Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley/Teubner, New York/Stuttgart (1996)

    MATH  Google Scholar 

  136. Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013)

    Book  MATH  Google Scholar 

  137. Walsh, T.F., Reese, G.M., Hetmaniuk, U.L.: Explicit a posteriori error estimates for eigenvalue analysis of heterogeneous elastic structures. Comput. Methods Appl. Mech. Eng. 196(37–40), 3614–3623 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  138. Weinberger, H.F.: Variational methods for eigenvalue approximation. Society for Industrial and Applied Mathematics, Philadelphia (1974). Based on a series of lectures presented at the NSF-CBMS Regional Conference on Approximation of Eigenvalues of Differential Operators, Vanderbilt University, Nashville, Tenn., 26–30 June 1972, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 15

    Google Scholar 

  139. Wu, H., Zhang, Z.: Enhancing eigenvalue approximation by gradient recovery on adaptive meshes. IMA J. Numer. Anal. 29(4), 1008–1022 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  140. Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problem. Math. Comput. 70, 17–25 (1999)

    Article  MathSciNet  Google Scholar 

  141. Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid disretizations. Math. Comput. 69, 881–909 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  142. Zeiser, A.: On the optimality of the inexact inverse iteration coupled with adaptive finite element methods. Preprint 57, DFG-SPP 1324 (2010)

    Google Scholar 

  143. Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26(4), 1192–1213 (electronic) (2005)

    Google Scholar 

  144. Zhang, Z., Yan, N.: Recovery type a posteriori error estimates in finite element methods. Korean J. Comput. Appl. Math. 8(2), 235–251 (2001)

    MATH  MathSciNet  Google Scholar 

  145. Zienkiewicz, O.C., Zhu, J.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24(2), 337–357 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  146. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique. Int. J. Numer. Methods Eng. 33(7), 1331–1364 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  147. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. II. Error estimates and adaptivity. Int. J. Numer. Methods Eng. 33(7), 1365–1382 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Federico Poloni for careful reading of the paper and providing valuable comments. The work of the author has been supported by the DFG Research Fellowship under the DFG GEPRIS Project Adaptive methods for nonlinear eigenvalue problems with parameters and Chair of Numerical Algorithms and High-Performance Computing, Mathematics Institute of Computational Science and Engineering (MATHICSE), École Polytechnique Fédérale de Lausanne, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Międlar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Międlar, A. (2015). A Story on Adaptive Finite Element Computations for Elliptic Eigenvalue Problems. In: Benner, P., Bollhöfer, M., Kressner, D., Mehl, C., Stykel, T. (eds) Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-15260-8_9

Download citation

Publish with us

Policies and ethics