Skip to main content

Part of the book series: World Sustainability Series ((WSUSE))

Abstract

Hemp as natural plant is essentially a composite in which rigid cellulose micro-fibrils are embedded in a soft matrix composed of lignin and hemicellulose. Hemicelluloses and, to some extent, pectin are the primary components of the binding substance of the elementary bast and shive fibres, while lignin plays the part of stabilizer and screen for other fibrogenous substances. Practically all the production of hemp-based chemical pulps are still using the sulphite and sulphate processes not very friendly to environment. Specifics of the physical and chemical structure of hemp plant components are discussed in details in the introduction part of the paper. Experimental investigation of the environmentally friendly steam explosion method applied to disperse the hemp fibres into smaller bundles and individual elementary fibres is carried out, analysis of residuals after every stage of the process, effect of the pressure, and distinction between non-retted and dew-retted fibres are qualified. The effects of the content of hemp fibres on linear low-density polyethylene matrix composites are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atalla RH, Vander Hart LD (1984) Native cellulose: a composite of two distinct crystaline forms. Science 223:283–285

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) A review of recent research into cellulosic whiskers, their properties and their applications in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  • BCMAF (1999) Industrial hemp factsheet—Sept 1999. http://www.agf.gov.bc.ca/speccrop/publications/documents/hempinfo.pdf

  • Bhuvan M, Mohini P, Sain M (2003) Mechanical properties of thermally treated hemp fibres. J. Mater Res Innov 7(4):231–238

    Article  CAS  Google Scholar 

  • Bjerre AB, Olesen AB, Fernqvist T, Plöger A, Schmidt AS (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioeng 49:568–577

    Article  CAS  Google Scholar 

  • Bjerre AB, Schmidt AS (1997) Development of chemical and biological processes for production of bioethanol: optimization of the wet oxidation process and characterization of products, Riso-R-967(EN). Riso National Laboratory, Roskilde, pp 5–9

    Google Scholar 

  • Bois WF (1982) Hemp as a raw material for the paper industry. Bedrijfsontwikkeling 13:851–856

    Google Scholar 

  • Bos HL, Donald AM (1999) In situ ESEM study of the deformation of elementary flax fibres. J Mater Sci 34:3029–3034

    Article  CAS  Google Scholar 

  • Brühlmann F, Leupin M, Erismann KH, Fiechter A (2000) Enzymatic degumming of ramie bast fibers. J Biotechnol 76:43–50

    Article  Google Scholar 

  • Candilo M, Ranalli P, Bozzi C (2003) Preliminary results of tests facing with the controlled retting of hemp. Ind Crops Prod 11:197–203

    Article  Google Scholar 

  • Dufresne A (2010) Polymer nanocomposites from biological sources. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, American scientific Publisher, USA

    Google Scholar 

  • Fan M (2010) Characterization and performance of elementary hemp fibres: factors influencing tensile strength. BioResources 5(4):2307–2322

    Google Scholar 

  • Garcia-Jaldon C, Dupeyere D, Vignon MR (1998) Fibres from semi-retted hemp bundles by steam explosion treatment. Biomass Bioenergy 14(3):251–260

    Article  CAS  Google Scholar 

  • Gravitis J (2006) Nano level structures in wood cell wall composites. Cell Chem Technol 40(5):291–298

    CAS  Google Scholar 

  • Gravitis J, Dobele G, Abolins J, Tupciauskas R, Veveris A (2011) Non-sulphur lignin studies under biorefinery concept and evaluation of energy consumption by steam explosion. Presentation, Paris

    Google Scholar 

  • Gutiea Rez AM, Rodriaguez I, Del Riao JC (2006) Chemical characterization of lignin and lipid fractions in industrial hemp bast fibers used for manufacturing high-quality paper pulps. J Agric Food Chem 54(6):2138–2144

    Article  CAS  Google Scholar 

  • Jose´ C, del Rı´o, Gutie´rrez A, Rodrı´guez IM, Ibarr D, A´ngel TM (2007) Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR. J Anal Appl Pyrol 79(1–2):39–46

    Google Scholar 

  • Klinke HB, Ahring BK, Schmidt AS, Thomsen AB (2002) Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour Technol 82:15–26

    Google Scholar 

  • Kukle S, Gravitis J, Putnina A (2012) Processing parameters influence on disintegration intensity of technical hemp fibres. J Biobased Mater Bioenergy 6(4):440–448

    Google Scholar 

  • Kukle S, Gravitis J, Putnina A, Stikute A (2011) The effect of steam explosion treatment on technical hemp fibres. In: Proceedings of the 8th international scientific and practical conference “environment. Technology. Resources”. Latvia, Rezekne, vol 20–22, pp 230–238

    Google Scholar 

  • Kukle S, Stramkale V, Kalnina D, Solizenko R (2012) Comparison of hemp fibre properties. In: Proceedings of the 6th international textile, clothing and design conference. ISSN 1847-7275, Dubrovnik, Croatia, Faculty of Textile Technology, Zagreb, 7–10 Oct 2012, pp 76–80

    Google Scholar 

  • Lilholt H, Lawther JM (2000) Natural organic fibres. In: Kelly A, Zweben C (ed) Comprehensive composite materials, vol 1. Elsevier, Amsterdam, pp 303–325

    Google Scholar 

  • Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296

    Article  CAS  Google Scholar 

  • Madsen B (2004) Properties of plant fibre yarn polymer composites—An experimental study. Ph.D. thesis, BYG-DTU, Technical University of Denmark. ISBN 87-7877-145-5

    Google Scholar 

  • Madsen FT, Burgert I, Jungnikl K, Felby C, Thomsen AB (2003) Effect of enzyme treatment and steam explosion on tensile properties of single hemp fiber. In: 12th International symposium on wood and pulping chemistry (ISWPC) Madison, p 80

    Google Scholar 

  • Montari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carbaxylated cellulose nanocrystals resulting from TEMP-mediated oxidation. Maxromolecules 38:1665–1671

    Article  CAS  Google Scholar 

  • Montford SE (1999) Small measuring harm and benefit: the biodiversity friendliness of cannabis sativa. Glob Biodivers 8(4):2–13

    Google Scholar 

  • Morvan C, Jauneau A, Flaman A, Millet J, Demarty M (1990) Degradation of flax polysaccharides with purified endo-polygalacturonase. Carbohydr Polym 13:149–163

    Article  CAS  Google Scholar 

  • Mwaikambo LY, Ansell MP (1999) The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Die Angewandte Makromolekylare Chemie 272:108–116

    Article  CAS  Google Scholar 

  • Nishino T (2004) Natural fibre resources. In: Baillie C (ed) Green composites. Woodhead Publishing Ltd., England

    Google Scholar 

  • Putnina A, Kukle S, Gravitis J (2011) STEX treated and untreated hemp fiber comparative structural analysis. Sci J RTU 9 Ser Materiālzinātne 6:36–42

    Google Scholar 

  • Putnina A, Kukle S, Gravitis J (2012a) Effect of steam explosion treatment on hemp fibres microstructure. In: Book of proceedings 12th world textile conference AUTEX 2012 on innovative textile for high future demands, Croatia, Zadara, vol 13–15, pp 871–874

    Google Scholar 

  • Putnina A, Kukle S, Gravitis J (2012b) Natural hemp fibre as additives to form polymer composites. In: 17th International conference “mechanics of composite materials-2012”: book of abstracts, Latvia, Jurmala, 28 May 1, pp 178–178

    Google Scholar 

  • Putnina A, Kukle S, Gravitis J (2012c) Innovative technologies for products from renewable resources. In: 3rd international conference on integrative approaches towards sustainability “sustainable development, knowledge society and smart future manufacturing technologies Knowledge”: Abstracts, Latvia, Jūrmala, 27–30 June 2012, pp 19–20

    Google Scholar 

  • Robinson R (1985) The great book of hemp. 1996, Park Street Press, Main; Roe PJ, Ansell MP. Jute-reinforced polyester composites. J Mater Sci 20:4015–4020

    Article  Google Scholar 

  • Sahena IM, Brown RMJ (2005) Cellulose biosynthesis: current views and envolwing concepts. Ann Bot 96:9–21

    Article  CAS  Google Scholar 

  • Sannigrahi P, Pu Y, Arthur Ragauskas A (2010) Cellulosic biorefineries—unleashing lignin opportunities. Curr Opin Environ Sustain 2(5–6):383–393

    Article  Google Scholar 

  • Sedelnik N (2004) Properties of hemp fibre cottonised by biological modification of hemp hackling noils. Fibres Text Eastern Eur 12(1) (45)

    Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties, applications. Polimers 2:728–765. ISSN 2073-4360

    Google Scholar 

  • Soliženko R, Kajaks J, Nestore O, Kukle S (2012) Hemp fibres containing linear low density polyethylene composites exploitation properties. In: Abstracts of the Riga Technical University 53rd international scientific conference: dedicated to the 150th anniversary and the 1st congress of world engineers and Riga Polytechnical Institute/RTU Alumni: section: material science and applied chemistry, Latvia, Rīga, 11–12 Oct 2012, pp 18–18

    Google Scholar 

  • Souza Lima MM, Borsali RMJ (2004) Rodlike cellulose microcrystals: structure, properties and applications. Macromol Rapid Commun 25:771–787

    Google Scholar 

  • Szalkowski Z (1967) Podstawychemicznejtechnologiisurowcov I wlokeienlykowych, Warszawa

    Google Scholar 

  • Thomsen AB, Rasmussen S, Bohn V, Nielsen KV, Thygesen A (2005) Hemp raw materials: the effect of cultivar, growth conditions and pretreatment on the chemical composition of the fibres. R-1507, Risø National Laboratory, Denmark

    Google Scholar 

  • Thygesen A (2006) Properties of hemp fibre polymer composites. An optimisation of fibre properties using novel defibration methods and fibres characterisation, Ph.D. thesis, The royal agricultural and veterinary University of Denmark, ISBN 87-550-3440-3

    Google Scholar 

  • Thygesen A, Daniel G, Lilholt H (2005) Hemp fiber microstructure and use of fungal defibration to obtain fibers for composite materials. J Nat Fibers 2(4):19–37

    Article  CAS  Google Scholar 

  • Thygesen A, Thomsen AB, Skammelsen Schmidt A, Jorgensen H, Ahring BK, Olsson L (2003) Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw. Enzym Microbial Technol 32(5):606–615

    Google Scholar 

  • Thygesen A, Madsen FT, Lilholt H, Felby C, Thomsen AB (2002) Changes in chemical composition, degree of crystallisation and polymerisation of cellulose in hemp fibres caused by pre-treatment. In: Lilholt H, Madsen B, Toftegaard H, Cendre E, Megnis M, Mikkelsen LP, Sørensen BF (ed) Sustainable natural and polymeric composites—science and technology

    Google Scholar 

  • Vignon MR, Garcia-Jaldon C, Dupeyre D (1995) Steam explosion of the woody hemp chénevotte. Int J Biol Macromol 17:395–404

    Article  CAS  Google Scholar 

  • Wang HM, Postle R, Kessler RW, Kessler W (2003) Removing pectin and lignin during chemical processing of hemp for textile applications. Text Res J 73:664–669

    Article  CAS  Google Scholar 

  • Wang Q, Fan XR, Gao WD, Chen J (2006) Characterization of bioscoured cotton fabrics using FT-IR ATR spectroscopy and microscopy techniques. Carbohydr Res 341:2170–2175

    Article  CAS  Google Scholar 

  • Werf HMG, Mathijssen EWJM, Haverkort AJ (1996) The potential of hemp for sustainable fibre production: a crop physiological appraisal. Ann Appl Biol 129:109–123

    Article  Google Scholar 

  • Yan L (2009) Processing of hemp fibre using enzyme fugal treatment of composites. The University of Waikato, Waikato

    Google Scholar 

  • Zhou Y, Zhang J (2008) Structure and properties of hemp xyloid stem based viscose fiber. J Text Res 29(4):22–26

    CAS  Google Scholar 

  • Zimmer H, Kloss D (1995) Ultraschallaufschluss von Hanf. Ziele-Technologie-Anwendung-Resultate-Qualita¨tsmanagement. Nova-Institut. In: Proceedings of the bioresource Hemp ’95 symposium, Frankfurt, Germany, 3–5 Mar 1995

    Google Scholar 

  • Zimnievska M, Wladika-Przybylak M, Makowski J (2011) Cellulosic bast fibres, their structure and properties suitable for composite applications. In: Sushel Kalia B (ed) Cellulosic fibres: bio- and nano-polymer composites. Green Chemistry and Technology, Springer, Berlin, p 98

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janis Gravitis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kukle, S., Putnina, A., Gravitis, J. (2015). Hemp Fibres and Shives, Nano- and Micro-Composites. In: Leal Filho, W., Úbelis, A., Bērziņa, D. (eds) Sustainable Development, Knowledge Society and Smart Future Manufacturing Technologies. World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-319-14883-0_22

Download citation

Publish with us

Policies and ethics