Skip to main content

Abstract

In this work we consider the regularization of vectorial data such as color images. Based on the observation that edge alignment across image channels is a desirable prior for multichannel image restoration, we propose a novel scheme of minimizing the rank of the image Jacobian and extend this idea to second derivatives in the framework of total generalized variation. We compare the proposed convex and nonconvex relaxations of the rank function based on the Schatten-q norm to previous color image regularizers and show in our numerical experiments that they have several desirable properties. In particular, the nonconvex relaxations lead to better preservation of discontinuities. The efficient minimization of energies involving nonconvex and nonsmooth regularizers is still an important open question. We extend a recently proposed primal-dual splitting approach for nonconvex optimization and show that it can be effectively used to minimize such energies. Furthermore, we propose a novel algorithm for efficiently evaluating the proximal mapping of the ℓq norm appearing during optimization. We experimentally verify convergence of the proposed optimization method and show that it performs comparably to sequential convex programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  2. Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. In: Theoretical Foundations and Numerical Methods for Sparse Recovery. De Gruyter (2010)

    Google Scholar 

  3. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. Mps-Siam Series on Optimization, vol. 6. SIAM (2005)

    Google Scholar 

  4. Blomgren, P., Chan, T.F.: Color TV: Total variation methods for restoration of vector valued images. IEEE Trans. Image Processing 7, 304–309 (1998)

    Article  Google Scholar 

  5. Sapiro, G., Ringach, D.: Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Img. Proc. 5(11), 1582–1586 (1996)

    Article  Google Scholar 

  6. Bresson, X., Chan, T.F.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging 2(4), 255–284 (2008)

    Article  MathSciNet  Google Scholar 

  7. Condat, C.: Joint demosaicking and denoising by total variation minimization. In: IEEE Conference on Image Processing, pp. 2781–2784 (2012)

    Google Scholar 

  8. Miyata, T., Sakai, Y.: Vectorized total variation defined by weighted l infinity norm for utilizing inter channel dependency. In: 2012 19th IEEE International Conference on Image Processing (ICIP), pp. 3057–3060 (September 2012)

    Google Scholar 

  9. Goldluecke, B., Cremers, D.: An approach to vectorial total variation based on geometric measure theory. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  10. Lefkimmiatis, S., Roussos, A., Unser, M., Maragos, P.: Convex generalizations of total variation based on the structure tensor with applications to inverse problems. In: Pack, T. (ed.) SSVM 2013. LNCS, vol. 7893, pp. 48–60. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Ehrhardt, M.J., Arridge, S.: Vector-valued image processing by parallel level sets. IEEE Trans. on Image Processing 23, 9–18 (2014)

    Article  MathSciNet  Google Scholar 

  12. Moeller, M., Brinkmann, E., Burger, M., Seybold, T.: Color bregman tv Preprint. On ArXiv, http://arxiv.org/abs/1310.3146

  13. Huang, J., Mumford, D.: Statistics of natural images and models. In: Int. Conf. on Computer Vision and Pattern Recognition (CVPR) (1999)

    Google Scholar 

  14. Krishnan, D., Fergus, R.: Fast Image Deconvolution using Hyper-Laplacian Priors. In: Proc. Neural Information Processing Systems, pp. 1033–1041 (2009)

    Google Scholar 

  15. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Img. Sci. 3(3), 492–526 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ochs, P., Dosovitskiy, A., Pock, T., Brox, T.: An iterated L1 Algorithm for Non-smooth Non-convex Optimization in Computer Vision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013)

    Google Scholar 

  17. Bredies, K.: Recovering piecewise smooth multichannel images by minimization of convex functionals with total generalized variation penalty. In: Bruhn, A., Pock, T., Tai, X.-C. (eds.) Global Optimization Methods. LNCS, vol. 8293, pp. 44–77. Springer, Heidelberg (2014)

    Google Scholar 

  18. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the piecewise smooth Mumford-Shah functional. In: IEEE Int. Conf. on Comp. Vis. (ICCV) (2009)

    Google Scholar 

  19. Esser, E., Zhang, X., Chan, T.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Img. Sci. 3(4), 1015–1046 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Strekalovskiy, E., Cremers, D.: Real-Time Minimization of the Piecewise Smooth Mumford-Shah Functional. In: Proceedings of the European Conference on Computer Vision (2014)

    Google Scholar 

  22. Storath, M., Weinmann, A., Demaret, L.: Jump-sparse and sparse recovery using potts functionals. CoRR, pp. 1–1 (2013)

    Google Scholar 

  23. Möllenhoff, T., Strekalovskiy, E., Möller, M., Cremers, D.: The Primal-Dual Hybrid Gradient Method for Semiconvex Splittings (preprint, 2014), http://arxiv.org/abs/1407.1723

  24. Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: Inertial Proximal Algorithm for Non-convex Optimization. SIAM Journal on Imaging Sciences (SIIMS) (Preprint, 2014)

    Google Scholar 

  25. Bouaziz, S., Tagliasacchi, A., Pauly, M.: Sparse Iterative Closest Point. Computer Graphics Forum (Symposium on Geometry Processing) 32(5), 1–11 (2013)

    Article  Google Scholar 

  26. McKelvey, J.P.: Simple transcendental expressions for the roots of cubic equations. Amer. J. Phys. 52(3), 269–270 (1984)

    Article  MathSciNet  Google Scholar 

  27. Mirsky, L.: Symmetric gauge functions and unitarily invariant norms. Quart. J. Math. Oxford Ser. (2), 50–59 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Möllenhoff, T., Strekalovskiy, E., Moeller, M., Cremers, D. (2015). Low Rank Priors for Color Image Regularization. In: Tai, XC., Bae, E., Chan, T.F., Lysaker, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2015. Lecture Notes in Computer Science, vol 8932. Springer, Cham. https://doi.org/10.1007/978-3-319-14612-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14612-6_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14611-9

  • Online ISBN: 978-3-319-14612-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics