Skip to main content

Small-Angle X-Ray Scattering of Ionic Liquids

  • Chapter
Electrochemistry in Ionic Liquids

Abstract

Small-angle X-ray scattering (SAXS) is a powerful technique that is used to resolve the size and structure of phases on the nanometer scale, within a sample. While these features may also be observed with other techniques, such as electron microscopy or atomic force microscopy, SAXS provides a means to resolve statistically significant nanometer features in situ, because of its ability to probe over a relatively large sample volume (≈1 mm × 1 mm × 1 mm for typical ionic liquids). This makes SAXS well suited to study the structures of ionic liquids (IL). However, a typical SAXS experiment and subsequent analysis require careful considerations of the sample and limits of the analytical approach used. In this chapter, we will present a brief introduction to SAXS with special emphasis on the experimental setup and analysis. At the end of this chapter, X-ray Photon Correlation Spectroscopy will be presented as a potentially powerful technique to resolve the dynamics of scattering phases in IL solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Structure of matter series. Wiley, New York, NY

    Google Scholar 

  2. Guinier A (1963) X-ray diffraction in crystals, imperfect crystals, and amorphous bodies, A series of books in physics. W.H Freeman, San Francisco, CA

    Google Scholar 

  3. Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic Press, London

    Google Scholar 

  4. Gille W (2014) Particle and particle systems characterization: small-angle scattering (SAS) applications. CRC Press, Boca Raton, FL

    Google Scholar 

  5. Svergun DI, Koch MHJ, Timmins PA, May RP (2013) Small angle X-ray and neutron scattering from solutions of biological macromolecules, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  6. Svergun DI, Koch MHJ (2003) Small-angle scattering studies of biological macromolecules in solution. Rep Progr Phys 66:1735–1782

    CAS  Google Scholar 

  7. Pedersen JS (1997) Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv Colloid Interface Sci 70:171–210. doi:10.1016/S0001-8686(97)00312-6

    CAS  Google Scholar 

  8. Ilavsky J (2012) Nika: software for two-dimensional data reduction. J Appl Crystallogr 45(2):324–328. doi:10.1107/S0021889812004037

    CAS  Google Scholar 

  9. Pauw BR (2013) Everything SAXS: small-angle scattering pattern collection and correction. J Phys Condens Matter 25(38):383201. doi:10.1088/0953-8984/25/38/383201

    Google Scholar 

  10. Fan L, Degen M, Bendle S, Grupido N, Ilavsky J (2010) The absolute calibration of a small-angle scattering instrument with a laboratory X-ray source. J Phys Conf Ser 247:012005. doi:10.1088/1742-6596/247/1/012005

    Google Scholar 

  11. Ilavsky J, Jemian PR (2009) Irena: tool suite for modeling and analysis of small-angle scattering. J Appl Crystallogr 42:347–353

    CAS  Google Scholar 

  12. Kline SR (2006) Reduction and analysis of SANS and USANS data using IGOR Pro. J Appl Crystallogr 39:895–900

    CAS  Google Scholar 

  13. Glatter O (1980) Computation of distance distribution-functions and scattering functions of models for small-angle scattering experiments. Acta Phys Austriaca 52(3–4):243–256

    Google Scholar 

  14. Petoukhov MV, Svergun DI (2005) Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophys J 89(2):1237–1250. doi:10.1529/biophysj.105.064154

    CAS  Google Scholar 

  15. Svergun DI, Stuhrmann HB (1991) New developments in direct shape determination from small-angle scattering. Theory and model-calculations. Acta Crystallogr A 47:736–744. doi:10.1107/s0108767391006414

    Google Scholar 

  16. Konarev PV, Petoukhov MV, Volkov VV, Svergun DI (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J Appl Crystallogr 39:277–286. doi:10.1107/s0021889806004699

    CAS  Google Scholar 

  17. Franke D, Svergun DI (2009) DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Crystallogr 42:342–346. doi:10.1107/s0021889809000338

    CAS  Google Scholar 

  18. Als-Nielsen J, McMorrow D (2001) Elements of modern X-ray physics. Wiley, New York, NY

    Google Scholar 

  19. Dreiss CA, Jack KS, Parker AP (2006) On the absolute calibration of bench-top small-angle X-ray scattering instruments: a comparison of different standard methods. J Appl Crystallogr 39(1):32–38. doi:10.1107/s0021889805033091

    CAS  Google Scholar 

  20. Greaves TL, Kennedy DF, Weerawardena A, Tse NMK, Kirby N, Drummond CJ (2011) Nanostructured protic ionic liquids retain nanoscale features in aqueous solution while precursor bronsted acids and bases exhibit different behavior. J Phys Chem B 115(9):2055–2066. doi:10.1021/jp1112203

    CAS  Google Scholar 

  21. Yan S, Kennedy DF, Greaves TL, Weerawardena A, Mulder RJ, Kirby N, Gonghua S, Drummond CJ (2012) Protic ionic liquids with fluorous anions: physicochemical properties and self-assembly nanostructure. Phys Chem Chem Phys 14(22):7981–7992. doi:10.1039/c2cp40463j

    Google Scholar 

  22. Hettige JJ, Kashyap HK, Annapureddy HVR, Margulis CJ (2013) Anions, the reporters of structure in ionic liquids. J Phys Chem Lett 4(1):105–110. doi:10.1021/jz301866f

    CAS  Google Scholar 

  23. Yue X, Chen X, Li QT (2012) Comparison of aggregation behaviors of a phytosterol ethoxylate surfactant in protic and aprotic ionic liquids. J Phys Chem B 116(31):9439–9444. doi:10.1021/jp305230r

    CAS  Google Scholar 

  24. Greaves TL, Weerawardena A, Fong C, Drummond CJ (2007) Many protic ionic liquids mediate hydrocarbon-solvent interactions and promote amphiphile self-assembly. Langmuir 23(2):402–404. doi:10.1021/la062895k

    CAS  Google Scholar 

  25. Wu FG, Yu JS, Sun SF, Sun HY, Luo JJ, Yu ZW (2012) Stepwise ordering of imidazolium-based cationic surfactants during cooling-induced crystallization. Langmuir 28(19):7350–7359. doi:10.1021/la300739x

    CAS  Google Scholar 

  26. Shi LJ, Zhao MW, Zheng LQ (2012) Lyotropic liquid crystalline phases formed in ternary mixtures of N-alkyl-N-methylpyrrolidinium bromide/1-decanol/water. RSC Adv 2(31):11922–11929. doi:10.1039/c2ra21467a

    CAS  Google Scholar 

  27. Zhao XY, Cao YR, Cao GR, Xiao RJ (2012) Lamellar liquid crystalline phase formed by triblock copolymer L64 in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Acta Physico-Chimica Sinica 28(6):1411–1417. doi:10.3866/pku.whxb201203262

    CAS  Google Scholar 

  28. Pedersen JS, Gerstenberg MC (1996) Scattering form factor of block copolymer micelles. Macromolecules 29(4):1363–1365

    CAS  Google Scholar 

  29. Foerster S, Apostol L, Bras W (2010) Scatter: software for the analysis of nano- and mesoscale small-angle scattering. J Appl Crystallogr 43:639–646. doi:10.1107/s0021889810008289

    CAS  Google Scholar 

  30. Liu H, Hexemer A, Zwart PH (2012) The small angle scattering toolbox (SASTBX): an open-source software for biomolecular small-angle scattering. J Appl Crystallogr 45:587–593. doi:10.1107/s0021889812015786

    CAS  Google Scholar 

  31. Tjioe E, Heller WT (2007) ORNL_SAS: software for calculation of small-angle scattering intensities of proteins and protein complexes. J Appl Crystallogr 40:782–785. doi:10.1107/s002188980702420x

    CAS  Google Scholar 

  32. Weaver KD, Vrikkis RM, Van Vorst MP, Trullinger J, Vijayaraghavan R, Foureau DM, McKillop IH, MacFarlane DR, Krueger JK, Elliott GD (2012) Structure and function of proteins in hydrated choline dihydrogen phosphate ionic liquid. Phys Chem Chem Phys 14(2):790–801. doi:10.1039/c1cp22965f

    CAS  Google Scholar 

  33. Brunner-Popela J, Glatter O (1997) Small-angle scattering of interacting particles. I. Basic principles of a global evaluation technique. J Appl Crystallogr 30:431–442

    CAS  Google Scholar 

  34. Soni SS, Vekariya RL, Aswal VK (2013) Ionic liquid induced sphere-to-ribbon transition in the block copolymer mediated synthesis of silver nanoparticles. RSC Adv 3(22):8398–8406. doi:10.1039/c3ra41138a

    CAS  Google Scholar 

  35. Harada M, Yamada M, Kimura Y, Saijo K (2013) Influence of the organization of water-in-ionic liquid microemulsions on the size of silver particles during photoreduction. J Colloid Interface Sci 406:94–104. doi:10.1016/j.jcis.2013.05.068

    CAS  Google Scholar 

  36. Teixeira J (1988) Small-angle scattering by fractal systems. J Appl Crystallogr 21:781–785

    Google Scholar 

  37. Wagner J (2004) Small-angle scattering from spherical core-shell particles: an analytical scattering function for particles with Schulz-Flory size distribution. J Appl Crystallogr 37(5):750–756

    CAS  Google Scholar 

  38. Hammons JA, Muselle T, Ustarroz J, Tzedaki M, Rats M, Hubin A, Terryn H (2013) Stability, assembly, and particle/solvent interactions of Pd nanoparticles electrodeposited from a deep eutectic solvent. J Phys Chem C 117(27):14381–14389. doi:10.1021/jp403739y

    CAS  Google Scholar 

  39. Ruland W (1971) Small-angle scattering of 2-phase systems – determination and significance of systematic deviations from Porod’s law. J Appl Crystallogr 4:70–73

    Google Scholar 

  40. Kim MH (2004) Modified Porod’s law estimate of the transition-layer thickness between two phases: test of triangular smoothing function. J Appl Crystallogr 37:643–651. doi:10.1107/s0021889804013196

    CAS  Google Scholar 

  41. Bottero JY, Tchoubar D, Cases JM, Flessinger F (1982) Investigation of the hydrolysis of aqueous-solutions of aluminum-chloride. 2. Nature and structure by small-angle X-ray scattering. J Phys Chem 86(18):3667–3673

    CAS  Google Scholar 

  42. Hammons JA, Rayment T, Vandendael I, Blajiev O, Hubin A, Davenport AJ, Raes M, Terryn H (2010) A method to detect retained gas during AC electrograining using in-situ small angle X-ray scattering. Electrochem Commun 12(6):717–719

    CAS  Google Scholar 

  43. Atkin R, Warr GG (2008) The smallest amphiphiles: nanostructure in protic room-temperature ionic liquids with short alkyl groups. J Phys Chem B 112(14):4164–4166. doi:10.1021/jp801190u

    CAS  Google Scholar 

  44. Debye P (1947) Molecular-weight determination by light scattering. J Phys Colloid Chem 51(1):18–32. doi:10.1021/j150451a002

    CAS  Google Scholar 

  45. Pedersen JS, Schurtenberger P (1996) Scattering functions of semiflexible polymers with and without excluded volume effects. Macromolecules 29:7602–7612

    CAS  Google Scholar 

  46. Pfeifer P (1984) Fractal dimension as working tool for surface-roughness problems. Appl Surf Sci 18(1–2):146–164

    CAS  Google Scholar 

  47. Cheng G, Varanasi P, Li CL, Liu HB, Menichenko YB, Simmons BA, Kent MS, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12(4):933–941. doi:10.1021/bm101240z

    CAS  Google Scholar 

  48. Hohr A, Neumann HB, Schmidt PW, Pfeifer P, Avnir D (1988) Fractal surface and cluster structure of controlled-pore glasses and vycor porous-glass as revealed by small-angle X-ray and neutron scattering. Phys Rev B 38(2):1462–1467. doi:10.1103/PhysRevB.38.1462

    Google Scholar 

  49. Wong PZ, Howard J (1986) Surface roughening and the fractal nature of rocks. Phys Rev Lett 57(5):637–640. doi:10.1103/PhysRevLett.57.637

    Google Scholar 

  50. Martin JE, Hurd AJ (1987) Scattering from fractals. J Appl Crystallogr 20:61–78. doi:10.1107/s0021889887087107

    CAS  Google Scholar 

  51. Hammouda B (2010) A new Guinier-Porod model. J Appl Crystallogr 43:716–719. doi:10.1107/s0021889810015773

    CAS  Google Scholar 

  52. Beaucage G (1995) Approximations leading to a unified exponential power-law approach to small-angle scattering. J Appl Crystallogr 28:717–728

    CAS  Google Scholar 

  53. Beaucage G (2004) Determination of branch fraction and minimum dimension of mass-fractal aggregates. Phys Rev E 70(3):031401–031411. doi:10.1103/PhysRevE.70.031401

  54. Beaucage G, Kammler HK, Pratsinis SE (2004) Particle size distributions from small-angle scattering using global scattering functions. J Appl Crystallogr 37:523–535. doi:10.1107/s0021889804008969

    CAS  Google Scholar 

  55. Hu N, Borkar N, Kohls D, Schaefer DW (2011) Characterization of porous materials using combined small-angle X-ray and neutron scattering techniques. J Membr Sci 379(1–2):138–145. doi:10.1016/j.memsci.2011.05.053

    CAS  Google Scholar 

  56. Effler LJ, Fellers JF (1992) Structural orientation functions for anisotropic small-angle scattering. J Phys D Appl Phys 25(1):74–78. doi:10.1088/0022-3727/25/1/010

    CAS  Google Scholar 

  57. Pedersen JS (1997) Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv Colloid Interface Sci 70:171–210

    CAS  Google Scholar 

  58. Potton JA, Daniell GJ, Rainford BD (1988) Particle-size distributions from SANS data using the maximum-entropy method. J Appl Crystallogr 21:663–668. doi:10.1107/s0021889888004819

    Google Scholar 

  59. Takamuku T, Shimomura T, Sadakane K, Koga M, Seto H (2012) Aggregation of 1-dodecyl-3-methylimidazolium nitrate in water and benzene studied by SANS and H-1 NMR. Phys Chem Chem Phys 14(31):11070–11080. doi:10.1039/c2cp40891k

    CAS  Google Scholar 

  60. Pedersen JS (1993) Small-angle scattering from precipitates-analysis by use of a polydisperse hard-sphere model. Phys Rev B 47(2):657–665. doi:10.1103/PhysRevB.47.657

    Google Scholar 

  61. Ashcroft NW, Lekner J (1966) Structure and resistivity of liquid metals. Phys Rev 145(1):83–90. doi:10.1103/PhysRev.145.83

    CAS  Google Scholar 

  62. Weyerich B, Brunner-Popela J, Glatter O (1999) Small-angle scattering of interacting particles. II. Generalized indirect Fourier transformation under consideration of the effective structure factor for polydisperse systems. J Appl Crystallogr 32:197–209

    CAS  Google Scholar 

  63. Bradley AE, Hardacre C, Holbrey JD, Johnston S, McMath SEJ, Nieuwenhuyzen M (2002) Small-angle X-ray scattering studies of liquid crystalline 1-alkyl-3-methylimidazolium salts. Chem Mater 14(2):629–635. doi:10.1021/cm010542v

    CAS  Google Scholar 

  64. Li S, Banuelos JL, Guo J, Anovitz L, Rother G, Shaw RW, Hillesheim PC, Dai S, Baker GA, Cummings PT (2012) Alkyl chain length and temperature effects on structural properties of pyrrolidinium-based ionic liquids: a combined atomistic simulation and small-angle X-ray scattering study. J Phys Chem Lett 3(1):125–130. doi:10.1021/jz2013209

    CAS  Google Scholar 

  65. Pedersen JS (2001) Structure factors effects in small-angle scattering from block copolymer micelles and star polymers. J Chem Phys 114(6):2839. doi:10.1063/1.1339221

    CAS  Google Scholar 

  66. Parmar A, Aswal VK, Bahadur P (2012) Interaction between the ionic liquids 1-alkyl-3-methylimidazolium tetrafluoroborate and Pluronic (R) P103 in aqueous solution: a DLS, SANS and NMR study. Spectrochim Acta A Mol Biomol Spectrosc 97:137–143. doi:10.1016/j.saa.2012.05.075

    CAS  Google Scholar 

  67. Sastry NV, Vaghela NM, Macwan PM, Soni SS, Aswal VK, Gibaud A (2012) Aggregation behavior of pyridinium based ionic liquids in water – surface tension, H-1 NMR chemical shifts, SANS and SAXS measurements. J Colloid Interface Sci 371:52–61. doi:10.1016/j.jcis.2011.12.077

    CAS  Google Scholar 

  68. Lopez-Barron CR, Wagner NJ (2012) Structural transitions of CTAB micelles in a protic ionic liquid. Langmuir 28(35):12722–12730. doi:10.1021/la302231w

    CAS  Google Scholar 

  69. Sastry NV, Vaghela NM, Aswal VK (2012) Effect of alkyl chain length and head group on surface active and aggregation behavior of ionic liquids in water. Fluid Phase Equilib 327:22–29. doi:10.1016/j.fluid.2012.04.013

    CAS  Google Scholar 

  70. Teubner M, Strey R (1987) Origin of the scattering peak in microemulsions. J Chem Phys 87(5):3195–3200. doi:10.1063/1.453006

    CAS  Google Scholar 

  71. Atkin R, Warr GG (2007) Phase behavior and microstructure of microemulsions with a room-temperature ionic liquid as the polar phase. J Phys Chem B 111(31):9309–9316. doi:10.1021/jp065020n

    CAS  Google Scholar 

  72. Klee A, Prevost S, Kunz W, Schweins R, Kiefer K, Gradzielski M (2012) Magnetic microemulsions based on magnetic ionic liquids. Phys Chem Chem Phys 14(44):15355–15360. doi:10.1039/c2cp43048g

    CAS  Google Scholar 

  73. Rojas O, Tiersch B, Rabe C, Stehle R, Hoell A, Arlt B, Koetz J (2013) Nonaqueous microemulsions based on N, N′-alkylimidazolium alkylsulfate ionic liquids. Langmuir 29(23):6833–6839. doi:10.1021/la401080q

    CAS  Google Scholar 

  74. Larson-Smith K, Jackson A, Pozzo DC (2010) Small angle scattering model for pickering emulsions and raspberry particles. J Colloid Interface Sci 343(1):36–41. doi:10.1016/j.jcis.2009.11.033

    CAS  Google Scholar 

  75. McAlister BC, Grady BP (2002) The use of Monte-Carlo simulations to calculate small-angle scattering patterns. Macromol Symp 190:117–129

    CAS  Google Scholar 

  76. Henderson SJ (1996) Monte Carlo modeling of small-angle scattering data from non-interacting homogeneous and heterogeneous particles in solution. Biophys J 70(4):1618–1627

    CAS  Google Scholar 

  77. McAlister BC, Grady BP (1998) Simulation of small-angle X-ray scattering from single-particle systems. J Appl Cryst 31:594–599

    Google Scholar 

  78. Volkov VV, Svergun DI (2003) Uniqueness of ab initio shape determination in small-angle scattering. J Appl Crystallogr 36:860–864

    CAS  Google Scholar 

  79. Lu X, Yager KG, Johnston D, Black CT, Ocko BM (2013) Grazing-incidence transmission X-ray scattering: surface scattering in the Born approximation. J Appl Crystallogr 46(1):165–172. doi:10.1107/s0021889812047887

    CAS  Google Scholar 

  80. Pfeifer MA, Williams GJ, Vartanyants IA, Harder R, Robinson IK (2006) Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 442(7098):63–66. doi:10.1038/nature04867

    CAS  Google Scholar 

  81. Willmott PR, Pauli SA, Herger R, Schleputz CM, Martoccia D, Patterson BD, Delley B, Clarke R, Kumah D, Cionca C, Yacoby Y (2007) Structural basis for the conducting interface between LaAlO3 and SrTiO3. Phys Rev Lett 99(15). doi:10.1103/PhysRevLett.99.155502

  82. Westneat MW, Betz O, Blob RW, Fezzaa K, Cooper WJ, Lee WK (2003) Tracheal respiration in insects visualized with synchrotron X-ray imaging. Science 299(5606):558–560. doi:10.1126/science.1078008

    CAS  Google Scholar 

  83. Davis TJ, Gao D, Gureyev TE, Stevenson AW, Wilkins SW (1995) Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373(6515):595–598

    CAS  Google Scholar 

  84. Faigel G, Tegze M (1999) X-ray holography. Rep Prog Phys 62(3):355–393

    CAS  Google Scholar 

  85. Miao JW, Charalambous P, Kirz J, Sayre D (1999) Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400(6742):342–344

    CAS  Google Scholar 

  86. Prasad V, Semwogerere D, Weeks ER (2007) Confocal microscopy of colloids. J Phys Condens Matter 19(11):113102. doi:10.1088/0953-8984/19/11/113102

    Google Scholar 

  87. Grubel G, Zontone F (2004) Correlation spectroscopy with coherent X-rays. J Alloys Compd 362(1–2):3–11. doi:10.1016/s0925-8388(03)00555-3

    CAS  Google Scholar 

  88. Zhang F, Allen AJ, Levine LE, Ilavsky J, Long GG (2012) Ultra-small-angle X-ray scattering-X-ray photon correlation spectroscopy: a new measurement technique for in-situ studies of equilibrium and nonequilibrium dynamics. Metall Mater Trans A Phys Metall Mater Sci 43A(5):1445–1453. doi:10.1007/s11661-011-0790-0

    Google Scholar 

  89. Brauer S, Stephenson GB, Sutton M, Bruning R, Dufresne E, Mochrie SGJ, Grubel G, Alsnielsen J, Abernathy DL (1995) X-ray-intensity fluctuation spectroscopy observations of critical-dynamics in Fe3al. Phys Rev Lett 74(11):2010–2013

    CAS  Google Scholar 

  90. Dierker SB, Pindak R, Fleming RM, Robinson IK, Berman L (1995) X-ray photon-correlation spectroscopy study of Brownian-motion of gold colloids in glycerol. Phys Rev Lett 75(3):449–452. doi:10.1103/PhysRevLett.75.449

    CAS  Google Scholar 

  91. ThurnAlbrecht T, Steffen W, Patkowski A, Meier G, Fischer EW, Grubel G, Abernathy DL (1996) Photon correlation spectroscopy of colloidal palladium using a coherent x-ray beam. Phys Rev Lett 77(27):5437–5440. doi:10.1103/PhysRevLett.77.5437

    CAS  Google Scholar 

  92. Lurio LB, Lumma D, Sandy AR, Borthwick MA, Falus P, Mochrie SGJ, Pelletier JF, Sutton M, Regan L, Malik A, Stephenson GB (2000) Absence of scaling for the intermediate scattering function of a hard-sphere suspension: static and dynamic X-ray scattering from concentrated polystyrene latex spheres. Phys Rev Lett 84(4):785–788. doi:10.1103/PhysRevLett.84.785

    CAS  Google Scholar 

  93. Banchio AJ, Gapinski J, Patkowski A, Haussler W, Fluerasu A, Sacanna S, Holmqvist P, Meier G, Lettinga MP, Nagele G (2006) Many-body hydrodynamic interactions in charge-stabilized suspensions. Phys Rev Lett 96(13):138303. doi:10.1103/PhysRevLett.96.138303

    Google Scholar 

  94. Orsi D, Fluerasu A, Moussaid A, Zontone F, Cristofolini L, Madsen A (2012) Dynamics in dense hard-sphere colloidal suspensions. Phys Rev E 85(1):011402. doi:10.1103/PhysRevE.85.011402

    Google Scholar 

  95. Zhang F, Allen AJ, Levine LE, Ilavsky J, Long GG (2013) Structure and dynamics studies of concentrated micrometer-sized colloidal suspensions. Langmuir 29(5):1379–1387. doi:10.1021/la3044768

    CAS  Google Scholar 

  96. Robert A, Wandersman E, Dubois E, Dupuis V, Perzynski R (2006) Glassy dynamics and aging in a dense ferrofluid. Europhys Lett 75(5):764–770. doi:10.1209/epl/i2006-10179-4

    CAS  Google Scholar 

  97. Guo HY, Bourret G, Corbierre MK, Rucareanu S, Lennox RB, Laaziri K, Piche L, Sutton M, Harden JL, Leheny RL (2009) Nanoparticle motion within glassy polymer melts. Phys Rev Lett 102(7):075702. doi:10.1103/PhysRevLett.102.075702

    Google Scholar 

  98. Leitner M, Sepiol B, Stadler LM, Pfau B, Vogl G (2009) Atomic diffusion studied with coherent X-rays. Nat Mater 8(9):717–720. doi:10.1038/nmat2506

    CAS  Google Scholar 

  99. Ruta B, Chushkin Y, Monaco G, Cipelletti L, Pineda E, Bruna P, Giordano VM, Gonzalez-Silveira M (2012) Atomic-scale relaxation dynamics and aging in a metallic glass probed by X-ray photon correlation spectroscopy. Phys Rev Lett 109(16). doi:10.1103/PhysRevLett.109.165701

  100. Trappe V, Pitard E, Ramos L, Robert A, Bissig H, Cipelletti L (2007) Investigation of q-dependent dynamical heterogeneity in a colloidal gel by X-ray photon correlation spectroscopy. Phys Rev E 76(5). doi:10.1103/PhysRevE.76.051404

  101. Guo HY, Ramakrishnan S, Harden JL, Leheny RL (2011) Gel formation and aging in weakly attractive nanocolloid suspensions at intermediate concentrations. J Chem Phys 135(15). doi:10.1063/1.3653380

  102. Poniewierski A, Holyst R, Price AC, Sorensen LB, Kevan SD, Toner J (1998) Dynamic correlation functions for finite and infinite smectic-A systems: theory and experiment. Phys Rev E 58(2):2027–2040

    CAS  Google Scholar 

  103. Madsen A, Als-Nielsen J, Grubel G (2003) Viscosity of a liquid crystal near the nematic-smectic A phase transition. Phys Rev Lett 90(8):085701. doi:10.1103/PhysRevLett.90.085701

    Google Scholar 

  104. Livet F, Bley F, Caudron R, Geissler E, Abernathy D, Detlefs C, Grubel G, Sutton M (2001) Kinetic evolution of unmixing in an AlLi alloy using x-ray intensity fluctuation spectroscopy. Phys Rev E 63(3):036108

    CAS  Google Scholar 

  105. Chung B, Ramakrishnan S, Bandyopadhyay R, Liang D, Zukoski CF, Harden JL, Leheny RL (2006) Microscopic dynamics of recovery in sheared depletion gels. Phys Rev Lett 96(22):228301. doi:10.1103/PhysRevLett.96.228301

    CAS  Google Scholar 

  106. Bandyopadhyay R, Liang D, Yardimci H, Sessoms DA, Borthwick MA, Mochrie SGJ, Harden JL, Leheny RL (2004) Evolution of particle-scale dynamics in an aging clay suspension. Phys Rev Lett 93(22):228302. doi:10.1103/PhysRevLett.93.228302

    CAS  Google Scholar 

  107. Lu XH, Mochrie SGJ, Narayanan S, Sandy AR, Sprung M (2008) How a liquid becomes a glass both on cooling and on heating. Phys Rev Lett 100(4):045701. doi:10.1103/PhysRevLett.100.045701

    Google Scholar 

  108. Seydel T, Madsen A, Tolan M, Grubel G, Press W (2001) Capillary waves in slow motion. Phys Rev B 63(7):073409

    Google Scholar 

  109. Madsen A, Seydel T, Sprung M, Gutt C, Tolan M, Grubel G (2004) Capillary waves at the transition from propagating to overdamped behavior. Phys Rev Lett 92(9):096104. doi:10.1103/PhysRevLett.92.096104

    CAS  Google Scholar 

  110. Jiang Z, Kim H, Jiao X, Lee H, Lee YJ, Byun Y, Song S, Eom D, Li C, Rafailovich MH, Lurio LB, Sinha SK (2007) Evidence for viscoelastic effects in surface capillary waves of molten polymer films. Phys Rev Lett 98(22):227801. doi:10.1103/PhysRevLett.98.227801

    Google Scholar 

  111. Mukhopadhyay MK, Jiao X, Lurio LB, Jiang Z, Stark J, Sprung M, Narayanan S, Sandy AR, Sinha SK (2008) Thickness induced structural changes in polystyrene films. Phys Rev Lett 101(11):115501. doi:10.1103/PhysRevLett.101.115501

    CAS  Google Scholar 

  112. Narayanan S, Lee DR, Hagman A, Li XF, Wang J (2007) Particle dynamics in polymer-metal nanocomposite thin films on nanometer-length scales. Phys Rev Lett 98(18):185506. doi:10.1103/PhysRevLett.98.185506

    Google Scholar 

  113. Streit S, Gutt C, Chamard V, Robert A, Sprung M, Sternemann H, Tolan M (2007) Two-dimensional dynamics of metal nanoparticles on the surface of thin polymer films studied with coherent X rays. Phys Rev Lett 98(4):047801. doi:10.1103/PhysRevLett.98.047801

    CAS  Google Scholar 

  114. Duri A, Autenrieth T, Stadler LM, Leupold O, Chushkin Y, Grubel G, Gutt C (2009) Two-dimensional heterogeneous dynamics at the surface of a colloidal suspension. Phys Rev Lett 102(14):145701. doi:10.1103/PhysRevLett.102.145701

    CAS  Google Scholar 

  115. Goodman JW (1975) Statistical properties of laser speckle patterns. In: Laser speckle and related phenomena, vol 9. Topics in applied physics. Springer, Berlin, pp 9–75. doi:10.1007/BFb0111436

  116. Sutton M, Mochrie SGJ, Greytak T, Nagler SE, Berman LE, Held GA, Stephenson GB (1991) Observation of speckle by diffraction with coherent X-rays. Nature 352(6336):608–610

    Google Scholar 

  117. Williams GJ, Pfeifer MA, Vartanyants IA, Robinson IK (2003) Three-dimensional imaging of microstructure in Au nanocrystals. Phys Rev Lett 90(17). doi:10.1103/PhysRevLett.90.175501

  118. Malik A, Sandy AR, Lurio LB, Stephenson GB, Mochrie SGJ, McNulty I, Sutton M (1998) Coherent X-ray study of fluctuations during domain coarsening. Phys Rev Lett 81(26):5832–5835

    CAS  Google Scholar 

  119. Robinson I, Harder R (2009) Coherent X-ray diffraction imaging of strain at the nanoscale. Nat Mater 8(4):291–298. doi:10.1038/nmat2400

    CAS  Google Scholar 

  120. Abernathy DL, Grubel G, Brauer S, McNulty I, Stephenson GA, Mochrie SGJ, Sandy AR, Mulders N, Sutton M (1998) Small-angle X-ray scattering using coherent undulator radiation at the ESRF. J Synchrotron Radiat 5:37–47. doi:10.1107/s0909049597015835

    CAS  Google Scholar 

  121. Sandy AR, Lurio LB, Mochrie SGJ, Malik A, Stephenson GB, Pelletier JF, Sutton M (1999) Design and characterization of an undulator beamline optimized for small-angle coherent X-ray scattering at the Advanced Photon Source. J Synchrotron Radiat 6:1174–1184. doi:10.1107/s0909049599009590

    Google Scholar 

  122. Zhang F, Allen AJ, Levine LE, Ilavsky J, Long GG, Sandy AR (2011) Development of ultra-small-angle X-ray scattering-X-ray photon correlation spectroscopy. J Appl Crystallogr 44:200–212. doi:10.1107/s0021889810053446

    CAS  Google Scholar 

  123. Lee S, Roseker W, Gutt C, Fischer B, Conrad H, Lehmkuhler F, Steinke I, Zhu D, Lemke H, Cammarata M, Fritz DM, Wochner P, Castro-Colin M, Hruszkewycz SO, Fuoss PH, Stephenson GB, Grubel G, Robert A (2013) Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS. Opt Express 21(21):24647–24664. doi:10.1364/oe.21.024647

    Google Scholar 

  124. Sutton M (2008) A review of X-ray intensity fluctuation spectroscopy. Comptes Rendus Physique 9(5–6):657–667. doi:10.1016/j.crhy.2007.04.008

    CAS  Google Scholar 

  125. Livet F (2007) Diffraction with a coherent X-ray beam: dynamics and imaging. Acta Crystallogr A 63:87–107. doi:10.1107/s010876730605570x

    CAS  Google Scholar 

  126. Nakashima T, Kawai T (2005) Quantum dots-ionic liquid hybrids: efficient extraction of cationic CdTe nanocrystals into an ionic liquid. Chem Commun 12:1643–1645. doi:10.1039/b418001a

    Google Scholar 

  127. Guerrero-Sanchez C, Lara-Ceniceros T, Jimenez-Regalado E, Rasa M, Schubert US (2007) Magnetorheological fluids based on ionic liquids. Adv Mater 19(13):1740. doi:10.1002/adma.200700302

    CAS  Google Scholar 

  128. Wang P, Zakeeruddin SM, Comte P, Exnar I, Gratzel M (2003) Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J Am Chem Soc 125(5):1166–1167. doi:10.1021/ja029294+

    CAS  Google Scholar 

  129. Shimano S, Zhou H, Honma I (2007) Preparation of nanohybrid solid-state electrolytes with liquidlike mobilities by solidifying ionic liquids with silica particles. Chem Mater 19(22):5216–5221. doi:10.1021/cm0707814

    CAS  Google Scholar 

  130. Ueno K, Watanabe M (2011) From colloidal stability in ionic liquids to advanced soft materials using unique media. Langmuir 27(15):9105–9115. doi:10.1021/la103942f

    CAS  Google Scholar 

  131. Sloutskin E, Ocko BM, Tamam L, Kuzmenko I, Gog T, Deutsch M (2005) Surface layering in ionic liquids: an X-ray reflectivity study. J Am Chem Soc 127(21):7796–7804. doi:10.1021/ja0509679

    Google Scholar 

  132. Sloutskin E, Huber P, Wolff M, Ocko BM, Madsen A, Sprung M, Schon V, Baumert J, Deutsch M (2008) Dynamics and critical damping of capillary waves in an ionic liquid. Phys Rev E 77(6). doi:10.1103/PhysRevE.77.060601

Download references

Acknowledgment

We thank Dr. Andrew J. Allen for his careful reading of our chapter. ChemMatCARS Sector 15 is principally supported by the National Science Foundation/Department of Energy under grant number NSF/CHE-0822838. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua A. Hammons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hammons, J.A., Ilavsky, J., Zhang, F. (2015). Small-Angle X-Ray Scattering of Ionic Liquids. In: Torriero, A. (eds) Electrochemistry in Ionic Liquids. Springer, Cham. https://doi.org/10.1007/978-3-319-13485-7_6

Download citation

Publish with us

Policies and ethics