Skip to main content

Mechatronic Considerations for Actuation of Human Assistive Wearable Robotics: Robust Control of a Series Elastic Actuator

  • Chapter
Intelligent Assistive Robots

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 106))

Abstract

To realize ideal force control of robots that interact with a human, a very precise actuating system with zero impedance is desired. For such applications, a rotary series elastic actuator (RSEA) has been introduced recently. This chapter presents the design of RSEA and the associated control algorithms. To generate joint torque as desired, a torsional spring is installed between a motor and a human joint, and the motor is controlled to produce a proper spring deflection for torque generation. When the desired torque is zero, the motor must follow the human joint motion, which requires that the friction and the inertia of the motor be compensated. The human joint and the body part impose the load on the RSEA. They interact with uncertain environments and their physical properties vary with time. In this chapter, the disturbance observer method is applied to make the RSEA precisely generate the desired torque under such time-varying conditions. Based on the nominal model preserved by the disturbance observer, feedback and feedforward controllers are optimally designed for the desired performance: i.e. the RSEA 1) exhibits very low impedance and 2) generates the desired torque precisely while interacting with a human. The effectiveness of the proposed design is verified by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayashi, T., Kawamoto, H., Sankai, Y.: Control method of robot suit HAL working as operator’s muscle using biological and dynamical information. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.: IROS 2005, pp. 3063–3068 (2005)

    Google Scholar 

  2. HAL-5, Cyberdyne Co., http://www.cyberdyne.jp

  3. Kazerooni, H., Racine, J., Huang, L., Steger, R.: On the control of the berkeley lower extremity exoskeleton (BLEEX). In: Proc. IEEE Int. Conf. Robotics Autom.: ICRA 2005, pp. 4353–4360 (2005)

    Google Scholar 

  4. Zoss, Kazerooni, H., Chu, A.: Biomechanical design of the berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans. Mechatronics 11(2), 128–138 (2006)

    Article  Google Scholar 

  5. Yamamoto, K., Ishii, M., Noborisaka, H., Hyodo, K.: Stand alone wearable power assisting suit-sensing and control systems. In: Proc. IEEE Int. Workshop Robot Human Interactive Commun.: ROMAN 2004, pp. 661–666.

    Google Scholar 

  6. Kong, K., Jeon, D.: Design and control of an exoskeleton for the elderly and patients. IEEE/ASME Trans. Mechatronics 11(4), 428–432 (2006)

    Article  Google Scholar 

  7. Kong, K., Jeon, D.: Fuzzy control of a new tendon-driven exoskeletal power assistive device. In: Proc. IEEE/ASME Int. Conf. Adv. Intell. Mech.: AIM 2005, pp. 146–151 (2005)

    Google Scholar 

  8. Banala, S.K., Agrawal, S.K., Fattah, A., Krishnamoorthy, V., Hsu, W., Scholz, J., Rudolph, K.: Gravity-balancing leg orthosis and its performance evaluation. IEEE Trans. Robotics 22(6), 1228–1239 (2006)

    Article  Google Scholar 

  9. Riener, R., Lünenburger, L., Jezernik, S., Anderschitz, M., Colombo, G., Dietz, V.: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans. Neural Syst. Rehabil. Eng. 13(3), 380–394 (2005)

    Article  Google Scholar 

  10. Hogan, N.: Impedance control: an approach to manipulation, parts I, II, III. J. Dyn. Syst., Meas. Control 107, 1–23 (1985)

    Article  MATH  Google Scholar 

  11. Blaya, J., Herr, H.: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans. Rehabil. Eng. 12(1), 24–31 (2004)

    Article  Google Scholar 

  12. Bar-Cohen, Y.: Electroactive Polymer (EAP) Actuators as Artificial Muscles - Reality, Potential and Challenges. SPIE Press (2004)

    Google Scholar 

  13. Noritsugu, T., Tanaka, T.: Application of rubber artificial muscle manipulator as a rehabilitation robot. IEEE/ASME Trans. Mechatronics 2(4), 259–267 (1997)

    Article  Google Scholar 

  14. Buerger, S.P., Hogan, N.: Complementary stability and loop shaping for improved human-robot interaction. IEEE Trans. Robotics 23(2), 232–244 (2007)

    Article  Google Scholar 

  15. Paluska, D., Herr, H.: Series elasticity and actuator power output. In: Proc. IEEE Int. Conf. Robotics Autom.: ICRA 2006, pp. 1830–1833 (2006)

    Google Scholar 

  16. Kong, K., Tomizuka, M.: Flexible joint actuator for patient’s rehabilitation device. In: Proc. IEEE Int. Symp. Robot Human Interactive Commun.: ROMAN 2007, pp. 1179–1184 (2007)

    Google Scholar 

  17. Pratt, J., Krupp, B., Morse, C.: Series elastic actuators for high fidelity force control. Int. J. Ind. Robot 29(3), 234–241 (2002)

    Article  Google Scholar 

  18. Low, K.H.: Initial experiments of a leg mechanism with a flexible geared joint and footpad. Adv. Robotics 19(4), 373–399 (2005)

    Article  Google Scholar 

  19. Pratt, G.A., Williamson, M.W.: Series elastic actuators. In: Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst.: IROS, Pittsburgh, PA, pp. 399–406 (1995)

    Google Scholar 

  20. Robinson, D.W., Pratt, J.E., Paluska, D.J., Pratt, G.A.: Series elastic actuator development for a biomimetic walking robot. In: Proc. IEEE/ASME Int. Conf. Adv. Intell. Mech.: AIM 1999, Atlanta, GA, pp. 561–568 (1999)

    Google Scholar 

  21. Williamson, M.M.: Series Elastic Actuators. M.S. Thesis, Massachusetts Institute of Technology (June 1995)

    Google Scholar 

  22. Alter, D.M., Tsao, T.C.: Dynamic stiffness enhancement of direct linear motor feed drives for machining. In: Proc. American Cont. Conf.: ACC 1994, vol. 3, pp. 3303–3307 (1994)

    Google Scholar 

  23. Katsura, S., Matsumoto, Y., Ohnishi, K.: Analysis and experimental validation of force bandwidth for force control. IEEE Trans. Ind. Electronics 53(3), 922–928 (2006)

    Article  Google Scholar 

  24. McKnight, E.: Control of Joint Forces: a New Perspective. Afcea International Press (1989)

    Google Scholar 

  25. Shigley, J., Mischke, C., Budynas, R.: Mechanical Engineering Design, ch. 10. McGraw-Hill (2004)

    Google Scholar 

  26. Winter, D.: Biomechanical Motor Control and Human Movement. Wiley-Interscience Publication (1990)

    Google Scholar 

  27. Lee, H., Tomizuka, M.: Robust motion controller design for high-accuracy positioning systems. IEEE Trans. Ind. Electronics 43(1), 48–55 (1996)

    Article  Google Scholar 

  28. Kong, K., Tomizuka, M.: Smooth and continuous human gait phase detection based on foot pressure patterns. In: Proc. IEEE Int. Conf. Robotics Autom.: ICRA 2008, pp. 3678–3683 (2008)

    Google Scholar 

  29. Masia, L., Krebs, H., Cappa, P., Hogan, N.: Design and characterization of hand module for whole-arm rehabilitation following stroke. IEEE/ASME Trans. Mechatronics 12(4), 399–407 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kong, K., Bae, J., Tomizuka, M. (2015). Mechatronic Considerations for Actuation of Human Assistive Wearable Robotics: Robust Control of a Series Elastic Actuator. In: Mohammed, S., Moreno, J., Kong, K., Amirat, Y. (eds) Intelligent Assistive Robots. Springer Tracts in Advanced Robotics, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-12922-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12922-8_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12921-1

  • Online ISBN: 978-3-319-12922-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics