Skip to main content

Learning Multi-scale Representations for Material Classification

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8753))

Included in the following conference series:

Abstract

The recent progress in sparse coding and deep learning has made unsupervised feature learning methods a strong competitor to hand-crafted descriptors. In computer vision, success stories of learned features have been predominantly reported for object recognition tasks. In this paper, we investigate if and how feature learning can be used for material recognition. We propose two strategies to incorporate scale information into the learning procedure resulting in a novel multi-scale coding procedure. Our results show that our learned features for material recognition outperform hand-crafted descriptors on the FMD and the KTH-TIPS2 material classification benchmarks.

Recommended for submission to YRF2014 by Dr. Mario Fritz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Challenges in learning hierarchical models: Transfer learning and optimization. https://sites.google.com/site/nips2011workshop/transfer-learning-challenge

  2. Pylearn2 vision, a python library for machine learning. http://deeplearning.net/software/pylearn2/

  3. Sparse modeling software, an optimization toolbox for solving various sparse estimation problems. http://spams-devel.gforge.inria.fr/

  4. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: NIPS (2007)

    Google Scholar 

  5. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expression compiler. In: Proceedings of the Python for Scientific Computing Conference (SciPy) (2010)

    Google Scholar 

  6. Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation. In: ICCV (2005)

    Google Scholar 

  7. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 1–27 (2011)

    Article  Google Scholar 

  8. Courville, A., Bergstra, J., Bengio, Y.: A spike and slab restricted boltzmann machine. In: JMLR (2011)

    Google Scholar 

  9. Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18(1), 1–34 (1999)

    Article  Google Scholar 

  10. Farabet, C., Couprie, C., Najman, L., LeCun., Y.: Scene Parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers. In: ICML (2012)

    Google Scholar 

  11. Goodfellow, I., Couville, A., Bengio, Y.: Large-scale feature learning with spike-and-slab sparse coding. In: ICML (2012)

    Google Scholar 

  12. Hayman, E., Caputo, B., Fritz, M., Eklundh, J.-O.: On the significance of real-world conditions for material classification. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 253–266. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu, D., Bo, L., Ren, X.: Toward robust material recognition for everyday objects. In: BMVC (2011)

    Google Scholar 

  15. Hussain, S., Triggs, B.: Visual recognition using local quantized patterns. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 716–729. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. IJCV 43(1), 29–44 (2001)

    Article  MATH  Google Scholar 

  17. Li, W., Fritz, M.: Recognizing materials from virtual examples. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 345–358. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Liu, C., Sharan, L., Adelson, E.H., Rosenholtz, R.: Exploring features in a bayesian framework for material recognition. In: CVPR (2010)

    Google Scholar 

  19. Mäenpää, T., Pietikäinen, M.: Multi-scale binary patterns for texture analysis. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 885–892. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. IEEE Trans. Pattern Anal. Mach. Intell. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. 24(7), 971–987 (2002)

    Google Scholar 

  21. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  22. Olshausen, B.A., et al.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  23. Qi, X., Xiao, R., Guo, J., Zhang, L.: Pairwise rotation invariant co-occurrence local binary pattern. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 158–171. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.: Self-taught learning: transfer learning from unlabeled data. In: ICML (2007)

    Google Scholar 

  25. Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2032–2047 (2009)

    Article  Google Scholar 

  26. Varma, M., Zisserman, A.: Classifying images of materials: achieving viewpoint and illumination independence. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part III. LNCS, vol. 2352, pp. 255–271. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  27. Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Int. J. Comput. Vis. - Special Issue on Texture Anal. Synth. 62(1–2), 61–81 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, W. (2014). Learning Multi-scale Representations for Material Classification. In: Jiang, X., Hornegger, J., Koch, R. (eds) Pattern Recognition. GCPR 2014. Lecture Notes in Computer Science(), vol 8753. Springer, Cham. https://doi.org/10.1007/978-3-319-11752-2_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11752-2_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11751-5

  • Online ISBN: 978-3-319-11752-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics