Skip to main content

Security of OS-Level Virtualization Technologies

  • Conference paper
Secure IT Systems (NordSec 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8788))

Included in the following conference series:

Abstract

The need for flexible, low-overhead virtualization is evident on The need for flexible, low-overhead virtualization is evident on many fronts ranging from high-density cloud servers to mobile devices. During the past decade OS-level virtualization has emerged as a new, efficient approach for virtualization, with implementations in multiple different Unix-based systems. Despite its popularity, there has been no systematic study of OS-level virtualization from the point of view of security. In this paper, we conduct a comparative study of several OSlevel virtualization systems, discuss their security and identify some gaps in current solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AppArmor project wiki, http://wiki.apparmor.net/index.php/Main_Page

  2. Cellrox project, http://www.cellrox.com/

  3. Cgroups, https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

  4. iCore project page, http://icoresoftware.com/

  5. Linux Containers mailing list, http://lists.linuxfoundation.org/pipermail/containers/2013-September/033466.html

  6. Linux Network Namespaces, http://www.opencloudblog.com/?p=42

  7. Linux Programmer’s Manual page on chroot(2) from 20.9.2010 (release 3.35)

    Google Scholar 

  8. Linux Programmer’s Manual pages (release 3.35)

    Google Scholar 

  9. Linux-VServer project, http://linux-vserver.org

  10. LxC project, http://linuxcontainers.org/

  11. Namespace support for Android binder, http://lwn.net/Articles/577957/

  12. OpenVZ project, http://openvz.org

  13. RCTL, https://wiki.freebsd.org/Hierarchical_Resource_Limits

  14. Sandboxie project page, http://www.sandboxie.com/

  15. Smack project, http://schaufler-ca.com/home

  16. TIPC project, http://tipc.sourceforge.net/

  17. Biederman: Multiple Instances of the Global Linux Namespaces. In: Linux Symposium, pp. 101–112 (2006)

    Google Scholar 

  18. Corbet: Seccomp and sandboxing, http://lwn.net/Articles/332974/

  19. Creasy: The origin of the VM/370 time-sharing system. IBM Journal of Research and Development, 483–490 (1981)

    Google Scholar 

  20. Edge: Another union filesystem approach, https://lwn.net/Articles/403012/

  21. Alpern, et al.: PDS: a virtual execution environment for software deployment. In: VEE, pp. 175–185 (2005)

    Google Scholar 

  22. Andrus, et al.: Cells: a virtual mobile smartphone architecture. In: ACM SOSP, pp. 173–187 (2011)

    Google Scholar 

  23. Asokan, et al.: Security of OS-level virtualization technologies: Technical report, http://arxiv.org/abs/1407.4245

  24. Banga, et al.: Resource containers: A new facility for resource management in server systems. In: OSDI, pp. 45–58 (1999)

    Google Scholar 

  25. Barham, et al.: Xen and the art of virtualization. In: ACM SIGOPS OSR, pp. 164–177 (2003)

    Google Scholar 

  26. Bhattiprolu, et al.: Virtual servers and checkpoint/restart in mainstream Linux. In: ACM SIGOPS OSR, pp. 104–113 (2008)

    Google Scholar 

  27. Chaudhary, et al.: A comparison of virtualization technologies for HPC. In: AINA, pp. 861–868 (2008)

    Google Scholar 

  28. Dodis, et al.: Security analysis of pseudo-random number generators with input:/dev/random is not robust. In: 2013 ACM SIGSAC, pp. 647–658 (2013)

    Google Scholar 

  29. Kamp, et al.: Jails: Confining the omnipotent root. In: SANE, p. 116 (2000)

    Google Scholar 

  30. Kivity, et al.: KVM: the Linux virtual machine monitor. In: Linux Symposium, vol. 1, pp. 225–230 (2007)

    Google Scholar 

  31. Mirkin, et al.: Containers checkpointing and live migration. In: Linux Symposium, pp. 85–92 (2008)

    Google Scholar 

  32. Osman, et al.: The design and implementation of Zap: A system for migrating computing environments. In: ACM SIGOPS OSR, pp. 361–376 (2002)

    Google Scholar 

  33. Padala, et al.: Performance evaluation of virtualization technologies for server consolidation. HP Labs Tec. Report (2007)

    Google Scholar 

  34. Pike, et al.: Plan 9 from Bell Labs. In: UKUUG, pp. 1–9 (1990)

    Google Scholar 

  35. Pike, et al.: The Use of Name Spaces in Plan 9. In: 5th Workshop on ACM SIGOPS European Workshop, pp. 1–5 (1992)

    Google Scholar 

  36. Price, et al.: Solaris Zones: Operating System Support for Consolidating Commercial Workloads. In: LISA, pp. 241–254 (2004)

    Google Scholar 

  37. Regola, et al.: Recommendations for virtualization technologies in high performance computing. In: IEEE CloudCom, pp. 409–416 (2010)

    Google Scholar 

  38. Shim, et al.: Bring Your Own Device (BYOD): Current Status, Issues, and Future Directions (2013)

    Google Scholar 

  39. Smalley, et al.: Implementing SELinux as a Linux security module. NAI Labs Report 1, 43 (2001)

    Google Scholar 

  40. Watson, et al.: Capsicum: Practical Capabilities for UNIX. In: USENIX, pp. 29–46 (2010)

    Google Scholar 

  41. Wessel, S., Stumpf, F., Herdt, I., Eckert, C.: Improving Mobile Device Security with Operating System-Level Virtualization. In: Janczewski, L.J., Wolfe, H.B., Shenoi, S. (eds.) SEC 2013. IFIP AICT, vol. 405, pp. 148–161. Springer, Heidelberg (2013)

    Google Scholar 

  42. Wright, et al.: Linux security module framework. In: Linux Symposium, pp. 604–617 (2002)

    Google Scholar 

  43. Xavier, et al.: Performance evaluation of container-based virtualization for high performance computing environments. In: PDP, pp. 233–240 (2013)

    Google Scholar 

  44. Yang, et al.: Impacts of Virtualization Technologies on Hadoop. In: ISDEA, pp. 846–849 (2013)

    Google Scholar 

  45. Yu, et al.: A feather-weight virtual machine for windows applications. In: VEE, pp. 24–34 (2006)

    Google Scholar 

  46. The Open Group. The Single UNIX® Specification: Authorized Guide to Version 4 (2010), http://www.unix.org/version4/theguide.html

  47. Kizza: Virtualization Infrastructure and Related Security Issues. In: Guide to Computer Network Security, pp. 447–464 (2013)

    Google Scholar 

  48. Kolyshkin: Virtualization in Linux. White paper, OpenVZ (2006)

    Google Scholar 

  49. Rosenblum: VMware’s Virtual Platform. In: Hot Chips, pp. 185–196 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Reshetova, E., Karhunen, J., Nyman, T., Asokan, N. (2014). Security of OS-Level Virtualization Technologies. In: Bernsmed, K., Fischer-Hübner, S. (eds) Secure IT Systems. NordSec 2014. Lecture Notes in Computer Science(), vol 8788. Springer, Cham. https://doi.org/10.1007/978-3-319-11599-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11599-3_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11598-6

  • Online ISBN: 978-3-319-11599-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics