Skip to main content

Oriented Regions for Linearly Conceptualized Features

  • Conference paper
Geographic Information Science (GIScience 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8728))

Included in the following conference series:

Abstract

The typical phenomena in geographic space are 2-dimensional or 3-dimensional in nature, yet people often conceptualize some of them as 1-dimensional entities embedded in a 2-dimensional space—rivers have widths and depths, and extent across the surface of the Earth, but for some tasks they are thought of as linear objects; likewise, roads as travel paths have widths as they wind through the landscape, but in some scenarios the extent is ignored and only connectivity between points along the path is considered. A critical property that makes these features special is the orientation that is attached (e.g., through the flow of the water or the traffic directions imposed by an authority). Contemporary spatial models capture such features either 1-dimensionally as networks of lines or directed lines, or 2-dimensionally simply as regions, each abstracting away one key property—in the case of the network the features’ extents and connections to neighboring areas, and in the case of regions their orientations. This paper introduces oriented regions as a model that preserves the key properties from both abstractions. Key properties of this approach are the sequences in which the boundaries of oriented regions interact, and the placement of objects with respect to the topological hull of a set of oriented regions. This model, dubbed hull+i, is based on topological hulls and the i-notation, a systematic method to capture boundary interactions between oriented regions, and provides a means for representing entire spatial scenes with an arbitrary number of objects, separations, and instances where ensembles of objects surround other objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandroff, P.: Elementary Concepts of Topology. Dover, Mineola (1961)

    MATH  Google Scholar 

  2. Allen, J.: Maintaining Knowledge about Temporal Intervals. Communications of the ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  3. Barkowsky, T., Latecki, L.J., Richter, K.-F.: Schematizing Maps: Simplification of Geographic Shape by Discrete Curve Evolution. In: Habel, C., Brauer, W., Freksa, C., Wender, K.F. (eds.) Spatial Cognition II. LNCS (LNAI), vol. 1849, pp. 41–53. Springer, Heidelberg (2000)

    Google Scholar 

  4. Clementini, E., Di Felice, P.: Topological Invariants for Lines. IEEE Transactions on Knowledge and Data Engineering 10(1), 28–45 (1998)

    Article  Google Scholar 

  5. Cohn, A., Bennett, B., Gooday, J., Gotts, N.: Qualitative Spatial Representation and Reasoning with the Region Connection Calculus. Geoinformatica 1(3), 275–316 (1997)

    Article  Google Scholar 

  6. Cohn, A., Renz, J.: Qualitative Spatial Representation and Reasoning. In: van Hermelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 551–596 (2008)

    Google Scholar 

  7. Egenhofer, M.J.: The Family of Conceptual Neighborhood Graphs for Region-Region Relations. In: Fabrikant, S.I., Reichenbacher, T., van Kreveld, M., Schlieder, C. (eds.) GIScience 2010. LNCS, vol. 6292, pp. 42–55. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Egenhofer, M.: Deriving the Composition of Binary Topological Relations. Journal of Visual Languages and Computing 5(2), 133–149 (1994)

    Article  Google Scholar 

  9. Egenhofer, M.: Definitions of Line-Line Relations for Geographic Databases. IEEE Data Engineering Bulletin 16(3), 40–45 (1993)

    Google Scholar 

  10. Egenhofer, M., Al-Taha, K.: Reasoning about Gradual Changes of Topological Relationships. In: Frank, A.U., Formentini, U., Campari, I. (eds.) GIS 1992. LNCS, vol. 639, pp. 196–219. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  11. Egenhofer, M., Frank, A., Jackson, J.: A Topological Data Model for Spatial Databases. In: Buchmann, A.P., Smith, T.R., Wang, Y.-F., Günther, O. (eds.) SSD 1989. LNCS, vol. 409, pp. 271–286. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  12. Egenhofer, M., Franzosa, R.: On the Equivalence of Topological Relations. International Journal of Geographical Information Systems 9(2), 133–152 (1995)

    Article  Google Scholar 

  13. Egenhofer, M., Franzosa, R.: Point-Set Topological Spatial Relations. International Journal of Geographical Information Systems 5(2), 161–174 (1991)

    Article  Google Scholar 

  14. Egenhofer, M., Herring, J.: Categorizing Binary Topological Relationships Between Regions, Lines, and Points in Geographic Databases, Department of Surveying Engineering, University of Maine, Orono, ME (1991)

    Google Scholar 

  15. Egenhofer, M., Mark, D.: Modeling Conceptual Neighborhoods of Topological Line-Region Relations. International Journal of Geographical Information Systems 9(5), 555–565 (1995)

    Article  Google Scholar 

  16. Egenhofer, M., Sharma, J., Mark, D.: A Critical Comparison of the 4-Intersection and 9-Intersection Models for Spatial Relations: Formal Analysis. In: McMaster, R., Armstrong, M. (eds.) Autocarto-Conferance, Minneapolis, MN, vol. 11, pp. 1–11 (1993)

    Google Scholar 

  17. Galton, A.: Modes of Overlap. Journal of Visual Languages and Computing 9(1), 61–79 (1998)

    Article  Google Scholar 

  18. Haklay, M., Weber, P.: OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Computing 7(4), 12–18 (2008)

    Article  Google Scholar 

  19. Klippel, A.: Wayfinding Choremes. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 301–315. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Klippel, A., Li, R., Yang, J., Hardisty, F., Xu, S.: The Egenhofer-Cohn Hypothesis or, Topological Relativity? In: Raubal, M., Mark, D., Frank, A. (eds.) Cognitive and Linguistic Aspects of Geographic Space, pp. 195–215. Springer (2013)

    Google Scholar 

  21. Klippel, A., Tappe, H., Kulik, L.: Wayfinding Choremes—A Language for Modeling Conceptual Route Knowledge. Journal of Visual Languages and Computing 16(4), 311–329 (2005)

    Article  Google Scholar 

  22. Kurata, Y.: The 9+-Intersection: A Universal Framework for Modeling Topological Relation. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2008. LNCS, vol. 5266, pp. 181–198. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Kurata, Y., Egenhofer, M.: The Arrow Semantic Interpreter. Spatial Cognition and Computing 8(4), 306–332 (2008)

    Article  Google Scholar 

  24. Kurata, Y., Egenhofer, M.: The Head-Body-Tail Intersection for Spatial Relations Between Directed Line Segments. In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2006. LNCS, vol. 4197, pp. 269–286. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Lewis, J.A., Dube, M.P., Egenhofer, M.J.: The Topology of Spatial Scenes in R2. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 495–515. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  26. Mark, D., Egenhofer, M.: Modeling Spatial Relations between Lines and Regions: Combining Formal Mathematical Models and Human Subjects Testing. Cartography and Geographic Information Systems 21(3), 195–212 (1994)

    Google Scholar 

  27. Moratz, R., Lücke, D., Mossakowski, T.: A Condensed Semantics for Qualitative Spatial Reasoning about Oriented Straight Line Segments. Artifical Intelligence 175(16-17), 2099–2127 (2011)

    Article  MATH  Google Scholar 

  28. Moratz, R., Renz, J., Wolter, D.: Qualitative Spatial Reasoning about Line Segments. In: Horn, W. (ed.) Proceedings of the 14th European Conference on Artificial Intelligence, ECAI 2000, Berlin, pp. 234–238 (2000)

    Google Scholar 

  29. Morehouse, S.: GIS-Based Map Compilation and Generalization. In: Müller, J.-C., Lagrange, J., Weibel, R. (eds.) GIS and Generalization: Methodology and Practice, pp. 21–30. Taylor&Francis, Bristol (1995)

    Google Scholar 

  30. Nedas, K., Egenhofer, M., Wilmsens, D.: Metric Details of Topological Line-Line Relations. International Journal of Geographical Information Science 21(1), 21–48 (2007)

    Article  Google Scholar 

  31. Reis, R., Egenhofer, M., Matos, J.: Topological Relations Using Two Models of Uncertainty for Lines. In: Caetano, M., Painho, M. (eds.) 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Lisbon, Portugal, pp. 5–7 (2006)

    Google Scholar 

  32. Reis, R., Egenhofer, M., Matos, J.: Conceptual Neighborhoods of Topological Relations between Lines. In: Ruas, A., Gold, C. (eds.) Headway in Spatial Data Handling, pp. 557–574. Springer (2008)

    Google Scholar 

  33. Ruas, A., Lagrange, J.: Data and Knowledge Modelling for Generalization. In: Müller, J., Lagrange, J., Weibel, R. (eds.) GIS and Generalization: Methodology and Practice, pp. 73–90. Taylor&Francis, Bristol (1995)

    Google Scholar 

  34. Schneider, M., Behr, T.: Topological Relationships Between Complex Spatial Objects. ACM Transactions on Database Systems 31(1), 39–81 (2006)

    Article  Google Scholar 

  35. Schwering, A.: Evaluation of a semantic similarity measure for natural language spatial relations. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 116–132. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  36. Timpf, S., Volta, G., Pollock, D., Egenhofer, M.: A Conceptual Model of Wayfinding Using Multiple Levels of Abstraction. In: Frank, A.U., Formentini, U., Campari, I. (eds.) GIS 1992. LNCS, vol. 639, pp. 348–367. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  37. Vasardani, M., Timpf, S., Winter, S., Tomko, M.: From Descriptions to Depictions: A Conceptual Framework. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 299–319. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  38. Worboys, M.: The Maptree: A Fine-Grained Formal Representation of Space. In: Xiao, N., Kwan, M.-P., Goodchild, M.F., Shekhar, S. (eds.) GIScience 2012. LNCS, vol. 7478, pp. 298–310. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lewis, J.A., Egenhofer, M.J. (2014). Oriented Regions for Linearly Conceptualized Features. In: Duckham, M., Pebesma, E., Stewart, K., Frank, A.U. (eds) Geographic Information Science. GIScience 2014. Lecture Notes in Computer Science, vol 8728. Springer, Cham. https://doi.org/10.1007/978-3-319-11593-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11593-1_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11592-4

  • Online ISBN: 978-3-319-11593-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics