Skip to main content

Fields as a Generic Data Type for Big Spatial Data

  • Conference paper
Geographic Information Science (GIScience 2014)

Abstract

This paper defines the Field data type for big spatial data. Most big spatial data sets provide information about properties of reality in continuous way, which leads to their representation as fields. We develop a generic data type for fields that can represent different types of spatiotemporal data, such as trajectories, time series, remote sensing and, climate data. To assess its power of generality, we show how to represent existing algebras for spatial data with the Fields data type. The paper also argues that array databases are the best support for processing big spatial data and shows how to use the Fields data type with array databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumann, P., Dehmel, A., Furtado, P., Ritsch, R., Widmann, N.: Spatio-temporal retrieval with RasDaMan. In: Proceedings of the 25th International Conference on Very Large Data Bases, VLDB 1999, pp. 746–749 (1999)

    Google Scholar 

  2. Campbell, P.: Editorial on special issue on big data: Community cleverness required. Nature 455(7209), 1 (2008)

    Article  Google Scholar 

  3. Cardelli, L., Wegner, P.: On understanding type, data abstraction, and polymorphism. ACM Computing Surveys 17(4), 471–552 (1985)

    Article  Google Scholar 

  4. Cordeiro, J., Camara, G., Freitas, U., Almeida, F.: Yet another map algebra. Geoinformatica 13(2), 183–202 (2009)

    Article  Google Scholar 

  5. Couclelis, H.: People manipulate objects (but cultivate fields): Beyond the raster-vector debate in GIS. In: Frank, A.U., Formentini, U., Campari, I. (eds.) GIS 1992. LNCS, vol. 639, pp. 65–77. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  6. Cudre-Mauroux, P., Kimura, H., Lim, K.T., Rogers, J., Madden, S., Stonebraker, M., Zdonik, S., Brown, P.: SS-DB: A standard science DBMS benchmark. In: XLDB 2010 - Extremely Large Databases Conference (2012)

    Google Scholar 

  7. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. Communications ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  8. Ferreira, K., Camara, G., Monteiro, A.: An algebra for spatiotemporal data: From observations to events. Transactions in GIS 18(2), 253–269 (2014)

    Article  Google Scholar 

  9. Frank, A.: One step up the abstraction ladder: Combining algebras - from functional pieces to a whole. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 95–108. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Frank, A.: Tiers of ontology and consistency constraints in geographic information systems. International Journal of Geographical Information Science 15(7), 667–678 (2001)

    Article  Google Scholar 

  11. Frank, A.: Map algebra extended with functors for temporal data. In: Akoka, J., et al. (eds.) ER Workshops 2005. LNCS, vol. 3770, pp. 194–207. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Frank, A.: GIS theory - the fundamental principles in GIScience: A mathematical approach. In: Harvey, F.J. (ed.) Are there Fundamental Principles in Geographic Information Science?, pp. 12–41 (2012)

    Google Scholar 

  13. Frank, A., Kuhn, W.: Specifying Open GIS with functional languages. In: Egenhofer, M., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 184–195. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  14. Galton, A.: Fields and objects in space, time and space-time. Spatial Cognition and Computation 4 (2004)

    Google Scholar 

  15. Goodchild, M.: Geographical data modeling. Computers and Geosciences 18(4), 401–408 (1992)

    Article  Google Scholar 

  16. Goodchild, M., Yuan, M., Cova, T.: Towards a general theory of geographic representation in GIS. International Journal of Geographical Information Science 21(3), 239–260 (2007)

    Article  Google Scholar 

  17. Guttag, J., Horowitz, E., Musser, D.: Abstract data types and software validation. Communications of the ACM 21(12), 1048–1064 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hansen, M., Potapov, P., Moore, R., Hancher, M., Turubanova, S., Tyukavina, A., Thau, D., Stehman, S., Goetz, S., Loveland, T., Kommareddy, A., Egorov, A., Chini, L., Justice, C., Townshend, J.: High-resolution global maps of 21st-century forest cover change. Science 342(6160), 850–853 (2013)

    Article  Google Scholar 

  19. Jiang, Z., Huete, A., Didan, K., Miura, T.: Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment 112(10), 3833–3845 (2008)

    Article  Google Scholar 

  20. Justice, C., Townshend, J., Vermote, E., Masuoka, E., Wolfe, R., Saleous, N., Roy, D., Morisette, J.: An overview of MODIS land data processing and product status. Remote Sensing of Environment 83(1), 3–15 (2002)

    Article  Google Scholar 

  21. Kemp, K.: Fields as a framework for integrating GIS and environmental process models. part one: Representing spatial continuity. Transactions in GIS 1(3), 219–234 (1997)

    Google Scholar 

  22. Kuhn, W.: Geospatial semantics: Why, of what, and how? Journal of Data Semantics 3, 1–24 (2005)

    Google Scholar 

  23. Mennis, J.: Multidimensional map algebra: Design and implementation of a spatiotemporal GIS processing language. Transactions in GIS 14(1), 1–21 (2010)

    Article  Google Scholar 

  24. OGC: The OpenGIS abstract specification - Topic 6: Schema for coverage geometry and functions (Tech. Rep. OGC 07-011). Tech. rep., Open Geospatial Consortium, Inc. (2007)

    Google Scholar 

  25. OGC: OGC web coverage service (WCS) interface standard - Core (OGC 09-110r3). Tech. rep., Open Geospatial Consortium, Inc. (2010)

    Google Scholar 

  26. Peuquet, D.: Representations of geographic space: Toward a conceptual synthesis. Annals of the Association of American Geographers 78(3), 375–394 (1988)

    Article  Google Scholar 

  27. Planthaber, G., Stonebraker, M., Frew, J.: EarthDB: scalable analysis of MODIS data using SciDB. In: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, pp. 11–19. ACM (2012)

    Google Scholar 

  28. Sinton, D.: The inherent structure of information as a constraint to analysis: Mapped thematic data as a case study. In: Dutton, G. (ed.) Harvard Papers on Geographic Information Systems, vol. 7, pp. 1–17. Addison-Wesley, Reading (1978)

    Google Scholar 

  29. Stonebraker, M., Brown, P., Zhang, D., Becla, J.: SciDB: A database management system for applications with complex analytics. Computing in Science & Engineering 15(3), 54–62 (2013)

    Article  Google Scholar 

  30. Tomlin, C.: Geographic Information Systems and Cartographic Modeling. Prentice-Hall, Englewood Cliffs (1990)

    Google Scholar 

  31. Winter, S., Nittel, S.: Formal information modelling for standardisation in the spatial domain. International Journal of Geographical Information Science 17(8), 721–741 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Camara, G. et al. (2014). Fields as a Generic Data Type for Big Spatial Data. In: Duckham, M., Pebesma, E., Stewart, K., Frank, A.U. (eds) Geographic Information Science. GIScience 2014. Lecture Notes in Computer Science, vol 8728. Springer, Cham. https://doi.org/10.1007/978-3-319-11593-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11593-1_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11592-4

  • Online ISBN: 978-3-319-11593-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics