Skip to main content

Inflow Process: A Counterpart of Evacuation

  • Conference paper
  • First Online:
Traffic and Granular Flow '13

Abstract

We propose a new concept,“inflow process” of pedestrians as a counterpart of an evacuation process. In the inflow process, pedestrians enter a limited area without hurrying. This type of pedestrian motion can be observed in our daily life, e.g. in elevators, trains, etc. From experimental observation, we found intriguing behaviors, including pedestrians’ preference for boundaries, collective orientation, etc. Besides, the inflow process has contrastive aspects to evacuation process. For this reason the process is important for the pedestrian dynamics field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Helbing, Rev. Mod. Phys. 73, 1067 (2001)

    Article  Google Scholar 

  2. T. Nagatani, Rep. Prog. Phys. 65, 1331 (2002)

    Article  Google Scholar 

  3. A. Kirchner, A. Schadschneider, Physica A 321, 260 (2002)

    Article  Google Scholar 

  4. A. Kirchner, K. Nishinari, A. Schadschneider, Phys. Rev. E 67, 056122 (2003)

    Article  Google Scholar 

  5. D.R. Parisi, C.O. Dorso, Physica A 606, 606 (2005)

    Article  Google Scholar 

  6. R.Y. Guo, H.J. Huang, Physica A 387, 580 (2008)

    Article  MathSciNet  Google Scholar 

  7. D. Yanagisawa, K. Nishinari, Phys. Rev. E 76, 061117 (2007)

    Article  Google Scholar 

  8. D. Yanagisawa, A. Kimura, A. Tomoeda, R. Nishi, Y. Suma, K. Ohtsuka, K. Nishinari, Phys. Rev. E 80, 036110 (2009)

    Article  Google Scholar 

  9. T. Ezaki, D. Yanagisawa, K. Nishinari, Phys. Rev. E 86, 026118 (2012)

    Article  Google Scholar 

  10. T. Ezaki, D. Yanagisawa, K. Ohtsuka, K. Nishinari, Physica A 391, 291–299 (2012)

    Article  Google Scholar 

  11. D. Helbing, I. Farkas, T. Vicsec, Nature 407, 487 (2000)

    Article  Google Scholar 

  12. A. Seyfried, B. Steffen, T. Lippert, Physica A 368, 232 (2006)

    Article  Google Scholar 

  13. M. Chraibi, A. Seyfried, A. Schadschneider, Phys. Rev. E 82, 046111 (2010)

    Article  Google Scholar 

  14. R. Löhner, Appl. Math. Model. 34, 366 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Was, B. Gudowski, P.J. Matuszyk, ACRI 2006. LNCS, vol. 4173 (Springer, Heidelberg, 2006), pp. 492–501

    Google Scholar 

  16. E.T. Hall, The Hidden Dimension (Anchor Press, New York, 1962)

    Google Scholar 

  17. M. Boltes, A. Seyfried, Neurocomputing 100, 127–133 (2013)

    Article  Google Scholar 

  18. F. Aurenhammer, ACM Comput. Surv. 23, 345 (1991)

    Article  Google Scholar 

  19. J. Zhang, W. Klingsch, A. Schadschneider, A. Seyfried, J. Stat. Mech. P06004 (2011). doi:10.1088/1742-5468/2011/06/P06004, http://iopscience.iop.org/1742-5468/2011/06/P06004

Download references

Acknowledgements

We appreciate Mohcine Chraibi and Maik Boltes for their technical support for performing the experiment and tracking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Ezaki .

Editor information

Editors and Affiliations

Appendix: Voronoi Diagram

Appendix: Voronoi Diagram

In this appendix we present the definition of a Voronoi diagram [18]. For a given area X and points P 1, P 2, ⋯ , P n  ∈ X, a Voronoi domain for each P i (1 ≤ i ≤ n) is defined as

$$\displaystyle{ V (P_{i}) =\{ P \in X\vert d(P,P_{i}) \leq d(P,P_{j}),j\neq i\}, }$$
(1)

where d(⋅ , ⋅ ) is a distance between two points. Namely, V (P i ) is a set of points whose distance to P i is smaller than to other points P j (ji). A set of V (P i ) defines a Voronoi diagram for X and P i (1 ≤ i ≤ n). This Voronoi diagram has been used to calculate the area used by one pedestrian [19]. In the inflow process, since the final spacial distribution of pedestrians is of great interest, the diagram is a powerful tool for evaluating it.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ezaki, T., Ohtsuka, K., Yanagisawa, D., Nishinari, K. (2015). Inflow Process: A Counterpart of Evacuation. In: Chraibi, M., Boltes, M., Schadschneider, A., Seyfried, A. (eds) Traffic and Granular Flow '13. Springer, Cham. https://doi.org/10.1007/978-3-319-10629-8_27

Download citation

Publish with us

Policies and ethics