Skip to main content

The Method of Dynamic Factors in Bioindication and Phytoremediation

  • Chapter
  • First Online:
Phytoremediation

Abstract

Bioindication and phytoremediation are applied aspects of the accumulation of chemical elements in plants. The fields of bioindication and phytoremediation have required evaluating the processes of the absorption of chemical elements by plants, in order to be able to compare plants by their capacity to absorb chemical elements and to compare the chemical elements by their possibilities to get into plants. However, besides the biochemical viewpoint towards getting of chemical elements into plants, the biogeochemical attitude is also of great importance. The latter is concentrated on the link between a plant and its environment, firstly the soil.

In order to compare the changes in the process of uptake of chemical elements by different plants (by evaluating the geochemical changes in the area), to evaluate the influence of soil modification on chemical elements’ participation in the plants’ metabolism, and to provide a quantitative evaluation of the phytoremediation efficiency during a specific period of time, a quantitative method of evaluation is presented in this paper; the method is based on the dynamic factors of bioaccumulation, biophilicity, translocation, and phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Plant–Soil Coefficient defines proportion of metal concentration in the plant’s ashes and the soil. In the works of other researchers, the concentration of metal in the plant has been recalculated on the basis of dry biomass.

  2. 2.

    There can be several levels of comparison of metal concentration in plants: (1) direct comparison of their concentration in biomass (incorrect because the concentration of respective metals in the soil that nourishes plants is not included); (2) bioconcentration (bioaccumulation) coefficients (the effect of higher or lower metal concentration in the soil on their uptake and accumulation in plants is not evaluated); (3) dynamic factors of bioaccumulation, which include the effect of soil metal concentration in control (background) and contaminated territories on their uptake and accumulation in plants.

  3. 3.

    The concepts and calculations of dynamic factors correspond to Baltrėnaitė et al. (2012) of the reference list.

References

  • Antoniadis V, Tsadilas CD, Samaras V, Sgouras J (2006) Availability of heavy metals applied to soil through sewage sludge. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. Taylor and Francis, Boca Raton, FL

    Google Scholar 

  • Augustaitis A, Bytnerowicz A (2008) Contribution of ambient ozone to Scots pine defoliation and reduced growth in the Central European forests: a Lithuanian case study. Environ Pollut 155(3):436–445

    Article  CAS  PubMed  Google Scholar 

  • Augustaitis A, Augustaitienė I, Cinga G, Mažeika J, Deltuvas R, Juknys R, Vitas A (2007a) Did the ambient ozone affect stem increment of Scots pines (Pinus sylvestris L.) on territories under regional pollution load? Step III of Lithuanian studies. ScientificWorldJournal 7(Suppl 1):58–66

    Article  CAS  PubMed  Google Scholar 

  • Augustaitis A, Augustaitienė I, Kliučius A, Girgždienė R, Šopauskienė D (2007b) Contribution of ambient ozone to changes in Scots pine defoliation. Step II of Lithuanian studies. ScientificWorldJournal 7(Suppl 1):47–57

    Article  CAS  PubMed  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders: strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Baltrėnaitė E, Butkus D (2006) Heavy metals in Pinus sylvestris L. wood infected with Heterobasidion annosum. In: 1st scientific meeting of WG1 Root to shoot translocation of pollutants and nutrients of COST Action 859 in 22–24 June 2006, in Santiago de Compostela, Spain. Poster presentation

    Google Scholar 

  • Baltrėnaitė E, Butkus D (2007) Modelling of Cu, Ni, Zn, Mn and Pb transport from soil to seedlings of coniferous and leafy trees. J Environ Eng Landsc Manag 15(4):200–207

    Google Scholar 

  • Baltrėnaitė E, Butkus D, Booth CA (2010) Comparison of three tree-ring sampling methods for trace metal analysis. J Environ Eng Landsc Manag 18(3):170–178

    Article  Google Scholar 

  • Baltrėnaitė E, Lietuvninkas A, Baltrėnas P (2012) Use of dynamic factors to assess metal uptake and transfer in plants – example of trees. Water Air Soil Pollut 223:4297–4306

    Article  Google Scholar 

  • Baltrėnaitė E, Baltrėnas P, Lietuvninkas A, Šerevičienė V, Zuokaitė E (2014) Integrated evaluation of aerogenic pollution by air-transported heavy metals (Pb, Cd, Ni, Zn, Mn and Cu) in the analysis of the main deposit media. Environ Sci Pollut Res. doi:10.1007/s11356-013-2046-6

    Google Scholar 

  • Baltrėnas P, Vaitkutė D (2011) Investigation and evaluation of copper and zinc concentration tendencies in Pinus sylvestris L. tree-rings. J Environ Eng Landsc Manag 19(4):278–286

    Article  Google Scholar 

  • Baltrėnas P, Ignatavičius G, Idzelis R, Greičiūtė K (2005) Aplinkos apsauga kariniuose poligonuose [Environmental Protection in Military Grounds]. Technika, Vilnius, 302 p

    Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB, Cambridge, 380 p

    Google Scholar 

  • Butkus D, Baltrėnaitė E (2007a) Transport of heavy metals from soil to Pinus sylvestris L. and Betula pendula trees. Ekologija 53(1):29–36

    CAS  Google Scholar 

  • Butkus D, Baltrėnaitė E (2007b) Accumulation of heavy metals in tree seedlings from soil amended with sewage sludge. Ekologija 53(4):68–76

    CAS  Google Scholar 

  • Butkus D, Pliopaitė Bataitienė I, Bataitis T (2008) 90Sr kaupimosi paprastosios pušies (Pinus sylvestris L.) medienoje tyrimas. J Environ Eng Landsc Manag 16(3):121–127

    Article  Google Scholar 

  • Chamberlain AC (1983) Fallout of lead and uptake by crops. Atmos Environ 17:693–706

    Article  CAS  Google Scholar 

  • Cook E, Kairiūkštis L (eds) (1999) Methods of dendrochronology. Applications in the environmental sciences. Kluwer, Dordrecht, 394 p

    Google Scholar 

  • Dobrovolsky VV (2008) Geochemical geography. Humanit VLADOS, Moscow, 207 p (in Russian)

    Google Scholar 

  • Gál J, Hursthhouse A, Tatner P, Steward F, Welton R (2008) Cobalt and secondary poisoning in the terrestrial food chain: data review and research gaps to support risk assessment. Environ Int 34:821–838

    Article  PubMed  Google Scholar 

  • Harju L, Saarela KE, Rajander J, Lill JO, Lindroos A, Heselius SJ (2002) Environmental monitoring of trace elements in bark of Scots pine by thick – target PIXE. Nucl Instrum Methods Phys Res 189:163–167

    Article  CAS  Google Scholar 

  • Jhee EM, Boyd RS, Eubanks MD (2005) Nickel hyperaccumulation as an elemental defence of Streptanthus polygaloides (Brassicaceae): influence of herbivore feeding mode. New Phytol 168:331–343

    Article  CAS  PubMed  Google Scholar 

  • Juknys R, Venclovienė J, Stravinskienė V, Augustaitis A, Bartkevičius E (2003) Scots pine (Pinus sylvestris L.) growth and condition in a polluted environment: from decline to recovery. Environ Pollut 125(2):205–212

    Article  CAS  PubMed  Google Scholar 

  • Juknys R, Venclovienė J, Jurkonis N, Bartkevičius E, Šepetienė J (2006) Relation between individual tree mortality and tree characteristics in a polluted and non-polluted environment. Environ Monit Assess 121(1–3):519–542

    Article  CAS  PubMed  Google Scholar 

  • Kabata-Pendias A (ed) (2010) Trace elements in soil and plants, 4th edn. CRC, Boca Raton, FL

    Google Scholar 

  • Kovalevsky AL (1987) Biogeochemical exploration for mineral deposits. VNU, Utrecht, 224 p

    Google Scholar 

  • Kupčinskienė E (2011) Aplinkos fitoindikacija [Environmental phytoindication]. Kaunas 752 p

    Google Scholar 

  • Lietuvninkas A (2012) Aplinkos geochemija [Environmental geochemistry]. Technika, Vilnius, 309 p

    Book  Google Scholar 

  • Machado A, Šlejkovec Z, Van Elteren JT, Freitas MC (2006) Arsenic speciation in transplanted lichens and tree bark in the framework of a biomonitoring scenario. J Atmos Chem 53:237–249

    Article  CAS  Google Scholar 

  • Markert B, Wunschmann S, Baltrėnaitė E (2012) Aplinkos stebėjimo naujovės. Bioindikatoriai ir biomonitoriai: apibrėžtys, strategijos ir taikymas [Innovative observation of the environment: bioindicators and biomonitors: definitions, strategies and applications]. J Environ Eng Landsc Manag 20(3):221–239. doi:10.3846/16486897. 2011.633338

    Article  Google Scholar 

  • Marozas V, Armolaitis K, Aleinikovienė J (2013) Changes of ground vegetation, soil chemical properties and microbiota following the surface fires in Scots pine forests. J Environ Eng Landsc Manag 21(1):67–75

    Article  Google Scholar 

  • Milburn JA (1979) Water flow in plants. Longman, London

    Google Scholar 

  • Mingorance MD, Valdes B, Rossini Oliva S (2007) Strategies of heavy metal uptake by plants growing under industrial emissions. Environ Int 33:514–520

    Article  CAS  PubMed  Google Scholar 

  • Navasaitis M (2008) Dendrologija [Dendrology]. Margi raštai, Vilnius, 856 p

    Google Scholar 

  • Navasaitis M, Ozolinčius R, Smaliukas D, Balevičienė J (2003) Lietuvos dendroflora [Lithuanian Dendroflora]. Lututė, Kaunas, 576 p

    Google Scholar 

  • Neverova OA, Jagodkina ЕА (2010) Stability of woody plants in the urbanized environment. http://ecotext.ru/58.html (in Russian)

  • Ozolinčius R, Stakėnas V, Serafinavičiūtė B (2005) Meteorological factors and air pollution in Lithuanian forests: possible effects on tree condition. Environ Pollut 137(3):587–595

    Article  PubMed  Google Scholar 

  • Perelman AI (1989) Geochemistry. High school, Moscow, 528 p (in Russian)

    Google Scholar 

  • Pliopaitė Bataitienė I, Butkus D (2010) Investigation of 137Cs and 90Sr transfer from sandy soil to Scots pine (Pinus sylvestris L.) rings. J Environ Eng Landsc Manag 18(4):281–287

    Article  Google Scholar 

  • Poschenrieder C, Allué J, Tolra R, Llugany M, Barcelo J (2008) Trace elements and plant secondary metabolism: quality and efficacy of herbal products. Chapter 5. In: Prasad MNV (ed) Trace elements – nutritional benefits, environmental contamination, and health implications. Wiley, New York, pp 99–120

    Google Scholar 

  • Prasad MNV (1997) Trace elements. In: Prasad MNV (ed) Plant ecophysiology. Wiley, New York, 207 p

    Google Scholar 

  • Prasad MNV (2006) Plants that accumulate and/or exclude toxic trace elements play an important role in phytoremediation. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. Taylor and Francis, Boca Raton, FL

    Google Scholar 

  • Prasad MNV, Hagemeyer J (eds) (1999) Heavy metal stress in plants. Springer, Berlin, 401 p

    Google Scholar 

  • Pulford ID, Dickinson NM (2006) Phytoremediation technologies using trees. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. Taylor and Francis, Boca Raton, FL

    Google Scholar 

  • Pundytė N, Baltrėnaitė E (2011) Tree bark ability to accumulate metals. In: 14th conference for young researchers “Mokslas – Lietuvos ateitis” [Science – the future of Lithuania], 14 Apr 2011, Vilnius. Poster presentation

    Google Scholar 

  • Pundytė N, Baltrėnaitė E, Pereira P, Paliulis P (2011a) Heavy metals and macronutrients transfer from soil to Pinus sylvestris L. In: 8th international conference environmental engineering, vol I, 19–20 May 2011. Selected papers, pp 308–312

    Google Scholar 

  • Pundytė N, Baltrėnaitė E, Pereira P, Paliulis D (2011b) Anthropogenic effects on heavy metals and macronutrients accumulation in soil and wood of Pinus sylvestris L. J Environ Eng Landsc Manag 19(1):34–43

    Article  Google Scholar 

  • Schulz H, Popp P, Huhn G, Stärk HJ, Schüürmann G (1999) Biomonitoring of airborne inorganic and organic pollutants by means of pine tree barks. I. Temporal and spatial variations. Sci Total Environ 232:49–55

    Article  CAS  PubMed  Google Scholar 

  • Shaw BP, Prasad MNV, Jha VK, Sahu BB (2006) Detoxification/defense mechanisms in metal-exposed plants. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. Taylor and Francis, Boca Raton, FL

    Google Scholar 

  • Stravinskienė V (2010) Medžių būklės stebėsena ir vertinimas Kauno miesto aplinkoje [Monitoring and Evaluation of Tree Condition in the Vicinity of Kaunas City]. J Environ Eng Landsc Manag 18(3):217–225

    Article  Google Scholar 

  • Stravinskienė V (2011) Pollution of “Akmenės cementas” vicinity: alkalizing microelements in soil, composition of vegetation species and projection coverage. J Environ Eng Landsc Manag 19(2):130–139

    Article  Google Scholar 

  • Stravinskienė V, Dičiūnaitė B (1999) Health condition and dendrochronological study of the lime trees Kaunas City. Baltic Forest 5(2):37–44

    Google Scholar 

  • Stravinskienė V, Erlickytė-Marčiukaitienė R (2009) Scots pine (Pinus sylvestris L.) radial growth dynamics in forest stands in the vicinity of “Akmenės cementas” plant. J Environ Eng Landsc Manag 17(3):140–147

    Article  Google Scholar 

  • Stravinskienė V, Šimatonytė A (2008) Dendrochronological research of Scots pine (Pinus sylvestris L.) growing in Vilnius and Kaunas forest parks. J Environ Eng Landsc Manag 16(2):57–64

    Article  Google Scholar 

  • Vaitkutė D, Baltrėnas P (2011) Manganese trends in tree rings of Pinus sylvestris L. monitoring soil chemical changes. In: 8th international conference environmental engineering, vol 1, 19–20 May 2011, selected papers, pp 425–431

    Google Scholar 

  • Vaitkutė D, Baltrėnaitė E, Booth CA, Fullen MA (2010) Does sewage sludge amendment to soil enhance the development of Silver birch and Scots pine? Hungar Geogr Bull 59(4):393–410

    Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MH, Milburn JA (1982) Transport and storage of water. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, vol 12B. Springer, Berlin, pp 135–151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edita Baltrėnaitė .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baltrėnaitė, E., Baltrėnas, P., Butkus, D., Lietuvninkas, A. (2015). The Method of Dynamic Factors in Bioindication and Phytoremediation. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10395-2_2

Download citation

Publish with us

Policies and ethics