Skip to main content

Plant-Microbe Interactions and Water Management in Arid and Saline Soils

  • Chapter
  • First Online:
Principles of Plant-Microbe Interactions

Abstract

Drought and salinity are major factors limiting agriculture in many regions in the world, and their importance is predicted to even increase in the near future in parallel with the ongoing global warming and climate changes. Soil and rhizosphere microbes are potential resources for counteracting such abiotic stresses in plants. The knowledge on the roles of root microorganisms in retaining soil humidity and promoting plant growth under such abiotic stresses is analyzed in this chapter. The importance of microbial diversity in the rhizosphere for alleviating drought and salinity effects on the plant physiology is discussed in the light of “Desert Farming”, the general crop management practice that is frequently used in arid regions. The plant growth promoting functional services exerted by microorganisms within the rhizosphere in arid soils are presented in relation to the plant response under water stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam M, Heuer H, Hallmann J (2014) Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PLoS One 9:e90402

    Article  PubMed Central  PubMed  Google Scholar 

  • Alavi P, Starcher MR, Zachow C et al (2013) Root-microbe systems: the effect and mode of interaction of Stress Protecting Agent (SPA) Stenotrophomonas rhizophila DSM14405 T. Front Plant Sci 4:141

    Article  PubMed Central  PubMed  Google Scholar 

  • Angel R, Soares MI, Ungar ED et al (2010) Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME J 4:553–563

    Article  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Armada E, Roldán A, Azcon R (2014) Differential activity of autochthonous bacteria in controlling drought stress in native lavandula and salvia plants species under drought conditions in natural arid soil. Microb Ecol 67:410–420

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Critical Rev Plant Sci 24:23–25

    Article  CAS  Google Scholar 

  • Berg G, Zachow C, Müller H et al (2013) Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy 3:648–656

    Article  Google Scholar 

  • Camehl I, Drzewiecki C, Vadassery Y et al (2011) The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis. PloS Pathog 7:e1002051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cho SM, Kang BR, Han SH et al (2008) 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis o6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microbe Interact 21:1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Clery D (2011) Environmental technology. Greenhouse-power plant hybrid set to make Jordan’s desert bloom. Science 331:136

    Article  CAS  PubMed  Google Scholar 

  • Corradi N, Bonfante P (2012) The arbuscular mycorrhizal symbiosis: origin and evolution of a beneficial plant infection. PLoS Pathog 8:e1002600

    Google Scholar 

  • de Los Ríos A, Valea S, Ascaso C et al (2010) Comparative analysis of the microbial communities inhabiting halite evaporites of the Atacama Desert. Int Microbiol 13:79–89

    PubMed  Google Scholar 

  • de Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 6:242–245

    Article  CAS  PubMed  Google Scholar 

  • Ding GC, Piceno YM, Heuer H et al (2013) Changes of soil bacterial diversity as a consequence of agricultural land use in a semi-arid ecosystem. PLoS One 8:e59497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freeman S, Horowitz S, Sharon A (2001) Pathogenic and non-pathogenic lifestyles in Colletotrichum acutatum from strawberry and other plants. Phytopathology 91:986–99.

    Article  CAS  PubMed  Google Scholar 

  • Geurts R, Lillo A, Bisseling T (2012) Exploiting an ancient signalling machinery to enjoy a nitrogen fixing symbiosis. Curr Opin Plant Biol 15:438–443

    Article  PubMed  Google Scholar 

  • Hasegawa S, Meguro A, Nishimura T, Kunoh H (2004). Drought tolerance of tissue-cultured seedlings of mountain laurel (Kalmia latifolia L.) induced by an endophytic actinomycete I. Enhancement of osmotic pressure in leaf cells. Actinomycetology 18:43–47

    Article  Google Scholar 

  • Heidari M, Mousavinik SM, Golpayegani A (2011) Plant growth promoting rhizobacteria (PGPR) effect on physiological paramters and mineral uptake in basil (Ociumum basilicum L.) under water stress. ARPN J Agric Biol Sci 6:6–11

    Google Scholar 

  • Köberl M, Müller H, Ramadan EM et al (2011) Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PloS ONE. 6:e24452

    Article  PubMed Central  PubMed  Google Scholar 

  • Köberl M, Ramadan EM, Adam M et al (2013a) Bacillus and Streptomyces were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS Microbiol Lett 342:168–178

    Google Scholar 

  • Köberl M, Schmidt R, Ramadan EM et al (2013b) Biocontrol strategies and next generation sequencing: organic desert agriculture in Egypt. iConcept online

    Google Scholar 

  • Kohlera J, Hernández JA, Caravacaa A et al (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. J Exp Bot 65:245–252

    Article  Google Scholar 

  • Marasco R, Rolli E, Ettoumi B et al (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7:e48479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marasco R, Rolli E, Fusi M et al (2013a) Plant growth gromotion potential is equally represented in diverse grapevine root-associated bacterial communities from different biopedoclimatic environments. BioMed Res Int 2013:491091

    Google Scholar 

  • Marasco R, Rolli E, Vigani G et al (2013b) Are drought-resistance promoting bacteria cross-compatible with different plant models? Plant Signal Behav 10:e26741

    Google Scholar 

  • Márquez LM, Redman RS, Rodriguez RJ et al (2007) A virus in a fungus in a plant-three way symbiosis required for thermal tolerance. Science 315:513–515

    Article  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick B (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Park S, Li J, Pittman JK et al (2005) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci U S A 102:18830–18835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Redman RS, Freeman S, Clifton DR et al (1999) Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna. Plant Physiol 119:795–804

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG et al (2002) Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science 298:1581

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rodríguez-Salazar R, Suárez R, Caballero-Mellado J et al (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296:52–59

    Article  PubMed  Google Scholar 

  • Rolli E, Marasco M, Vigani G et al (2014) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol. doi:10.1111/1462-2920.12439

    Google Scholar 

  • Schmidt R, Köberl M, Mostafa A et al (2014) Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants. Front Microbiol 5:64

    PubMed Central  PubMed  Google Scholar 

  • Waller F, Achatz B, Baltruschat H et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Daffonchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Daffonchio, D., Hirt, H., Berg, G. (2015). Plant-Microbe Interactions and Water Management in Arid and Saline Soils. In: Lugtenberg, B. (eds) Principles of Plant-Microbe Interactions. Springer, Cham. https://doi.org/10.1007/978-3-319-08575-3_28

Download citation

Publish with us

Policies and ethics