Online Knapsack Revisited

  • Marek Cygan
  • Łukasz Jeż
Conference paper

DOI: 10.1007/978-3-319-08001-7_13

Part of the Lecture Notes in Computer Science book series (LNCS, volume 8447)
Cite this paper as:
Cygan M., Jeż Ł. (2014) Online Knapsack Revisited. In: Kaklamanis C., Pruhs K. (eds) Approximation and Online Algorithms. WAOA 2013. Lecture Notes in Computer Science, vol 8447. Springer, Cham

Abstract

We investigate the online variant of the Multiple Knapsack problem: an algorithm is to pack items, of arbitrary sizes and profits, in k knapsacks (bins) without exceeding the capacity of any bin. We study two objective functions: the sum and the maximum of profits over all bins. Both have been studied before in restricted variants of our problem: the sum in Dual Bin Packing [1], and the maximum in Removable Knapsack [7, 8]. Following these, we study two variants, depending on whether the algorithm is allowed to remove (forever) items from its bins or not, and two special cases where the profit of an item is a function of its size, in addition to the general setting.

We study both deterministic and randomized algorithms; for the latter, we consider both the oblivious and the adaptive adversary model. We classify each variant as either admitting O(1)-competitive algorithms or not. We develop simple O(1)-competitive algorithms for some cases of the max-objective variant believed to be infeasible because only 1-bin deterministic algorithms were considered for them before.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marek Cygan
    • 1
  • Łukasz Jeż
    • 2
    • 3
  1. 1.Institute of InformaticsUniversity of WarsawPoland
  2. 2.Inst. of Computer ScienceUniversity of WrocławPoland
  3. 3.Dept. of Computer, Control, and Management EngineeringSapienza University of RomeItaly

Personalised recommendations