Skip to main content

Land Bridge Calibration of Rates of Molecular Evolution in a Widespread Rodent

  • Chapter
  • First Online:
Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life

Abstract

There is mounting evidence that rates of molecular evolution decay over recent timescales. Care is needed, therefore, to apply appropriate rates whenever molecular variation is analysed within a temporal context. Given their focus on recent events, intraspecific phylogeographic and demographic studies are particularly vulnerable to erroneous application of rates appropriate to longer periods of evolution and divergence. Rates for recent molecular evolution can be inferred directly from the DNA sequences themselves, but external geophysical events may also be used for calibration. In particular, the formation and loss of land bridges can provide an opportunity to calibrate intraspecific genealogies, estimate molecular rates and infer the absolute timing or scale of demographic changes. The Eurasian field vole Microtus agrestis is an exceptional system with which to examine recent demographic change and divergence in a wild mammal, because of its clear-cut pattern of molecular variation, being composed of three evolutionarily significant units (ESUs) that are reciprocally monophyletic for mitochondrial, sex-chromosome and autosomal markers. These three lineages are confined to northern Eurasia, southern Europe and western Iberia. The northern ESU is in turn comprised of six parapatric mitochondrial lineages, one of them confined to northern Britain. The restricted distribution of this lineage can be associated with the Holocene land bridge connecting Britain with mainland Europe, which permits the temporal calibration of the genealogy and the association of demographic changes with specific climatic episodes. The resulting estimate of the mitochondrial protein-coding substitution rate is very high (ca. 4 × 10−7 substitutions/site/year), similar to mutation rates measured from pedigrees, i.e. contemporary evolution. The reliability of this estimate is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beysard M, Perrin N, Jaarola M, Heckel G, Vogel P (2012) Asymmetric and differential gene introgression at a contact zone between two highly divergent lineages of field voles (Microtus agrestis). J Evol Biol 25:400–408

    Article  CAS  PubMed  Google Scholar 

  • Brown WM, George M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burridge CP, Craw D, Fletcher D, Waters JM (2008) Geological dates and molecular rates: fish DNA sheds light on time dependency. Mol Biol Evol 25:624–633

    Article  CAS  PubMed  Google Scholar 

  • Carstens BC, Pelletier TA, Reid NM, Satler JD (2013) How to fail at species delimitation. Mol Ecol 22:4369–4383

    Article  PubMed  Google Scholar 

  • Corbet GB (1961) Origin of the British insular races of small mammals and of the ‘Lusitanian’ fauna. Nature 191:1037–1040

    Article  Google Scholar 

  • Corbet GB (1978) The mammals of the Palaearctic region: a taxonomic review. British Museum (Natural History), London

    Google Scholar 

  • Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–1192

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88

    Article  PubMed Central  PubMed  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ence DD, Carstens BC (2010) SpedeSTEM: a rapid and accurate method for species delimitation. Mol Ecol Res 11:473–480

    Article  Google Scholar 

  • Gibbard PL, Smith AG, Zalasiewicz JA, Barry TL, Cantrill D, Coe AL, Cope JCW, Gale AS, Gregory FJ, Powell JH, Rawson PF, Stone P, Waters CN (2005) What status for the Quaternary? Boreas 34:1–6

    Article  Google Scholar 

  • Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies; assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  CAS  PubMed  Google Scholar 

  • Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hellborg L, Gündüz I, Jaarola M (2005) Analysis of sex-linked sequences supports a new mammal species in Europe. Mol Ecol 14:2025–2031

    Article  CAS  PubMed  Google Scholar 

  • Herman JS, Searle JB (2011) Post-glacial partitioning of mitochondrial genetic variation in the field vole. Proc R Soc B 278:3601–3607

    Article  PubMed Central  PubMed  Google Scholar 

  • Ho SYW, Phillips MJ, Cooper A, Drummond AJ (2005) Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 22:1561–1568

    Article  CAS  PubMed  Google Scholar 

  • Ho SYW, Shapiro B, Phillips MJ, Cooper A, Drummond AJ (2007a) Evidence for time dependency of molecular rate estimates. Syst Biol 56:515–522

    Article  PubMed  Google Scholar 

  • Ho SYW, Kolokotronis S-O, Allaby RG (2007b) Elevated substitution rates estimated from ancient DNA sequences. Biol Lett 3:702–705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ho SYW, Saarma U, Barnett R, Haile J, Shapiro B (2008) The effect of inappropriate calibration: three case studies in molecular ecology. PLoS ONE 3:e1615

    Article  PubMed Central  PubMed  Google Scholar 

  • Ho SYW, Lanfear R, Bromham L, Phillips MJ, Soubrier J, Rodrigo AG, Cooper A (2011) Time-dependent rates of molecular evolution. Mol Ecol 20:3087–3101

    Article  PubMed  Google Scholar 

  • Howell N, Smejkal CB, Mackey DA, Chinnery PF, Turnbull DM, Herrnstadt C (2003) The pedigree rate of sequence divergence in the human mitochondrial genome: there is a difference between phylogenetic and pedigree rates. Am J Hum Genet 72:659–670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Howell N, Howell C, Elson JL (2008) Time dependency of molecular rate estimates for mtDNA: this is not the time for wishful thinking. Heredity 101:107–108

    Article  CAS  PubMed  Google Scholar 

  • Isarin RFB (1997) Permafrost distribution and temperatures in Europe during the younger Dryas. Permafrost Periglac Process 8:313–333

    Article  Google Scholar 

  • Jaarola M, Searle JB (2002) Phylogeography of field voles (Microtus agrestis) in Eurasia inferred from mitochondrial DNA sequences. Mol Ecol 11:2613–2621

    Article  CAS  PubMed  Google Scholar 

  • Jaarola M, Searle JB (2004) A highly divergent mitochondrial DNA lineage of Microtus agrestis in southern Europe. Heredity 92:228–234

    Article  CAS  PubMed  Google Scholar 

  • Jaarola M, Martínková N, Gündüz I et al (2004) Molecular phylogeny of the speciose vole genus Microtus (Arvicolinae, Rodentia), inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 33:647–663

    Article  CAS  PubMed  Google Scholar 

  • Johnsen SJ, Clausen HB, Dansgaard W, Fuhrer K, Gundestrup N, Hammer CU, Iversen P, Jouzel J, Stauffer B, Steffensen JP (1992) Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359:311–313

    Article  Google Scholar 

  • Johnsen SJ, Dahl-Jensen D, Gundestrup N, Steffensen JP, Clausen HB, Miller H, Masson-Delmotte V, Sveinbjörnsdottir AE, White J (2001) Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J Quaternary Sci 16:299–307

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Knowles LL, Lanier HC, Klimov PB, He Q (2012) Full modelling versus summarizing gene-tree uncertainty: Method choice and species-tree accuracy. Mol Phylogenet Evol 65:501–509

    Article  PubMed  Google Scholar 

  • Lambeck K (1995) Late Devensian and Holocene shorelines of the British Isles and North Sea from models of glacio-hydro-isostatic rebound. J Geol Soc Lond 152:437–448

    Article  Google Scholar 

  • Martínková N, Barnett R, Cucchi T, Struchen R, Pascal M, Pascal M, Fischer MC, Higham T, Brace S, Ho SYW, Quéré J-P, O’Higgins P, Excoffier L, Heckel G, Hoelzel AR, Dobney KM, Searle JB (2013) Divergent evolutionary processes associated with colonization of offshore islands. Mol Ecol 22:5205–5220

    Article  PubMed  Google Scholar 

  • Millien V (2006) Morphological evolution is accelerated among island mammals. PLoS Biol 4:e321

    Article  PubMed Central  PubMed  Google Scholar 

  • Millien V (2011) Mammals evolve faster on smaller islands. Evolution 65:1935–1944

    Article  PubMed  Google Scholar 

  • Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 9:373–375

    Article  CAS  PubMed  Google Scholar 

  • Musser GG, Carleton MD (2005) Superfamily Muroidea. In: Wilson DE, Reeder DM (eds) Mammal species of the world. A taxonomic and geographic reference, 3rd ed. Johns Hopkins University Press, Maryland, p 834–1531

    Google Scholar 

  • Paupério J, Herman JS, Melo-Ferreira J, Jaarola M, Alves PC, Searle JB (2012) Cryptic speciation in the field vole: a multilocus approach confirms three highly divergent lineages in Eurasia. Mol Ecol 21:6015–6032

    Article  PubMed  Google Scholar 

  • Rambaut A (2012) FigTree v1.4. http://tree.bio.ed.ac.uk

  • Rambaut A, Drummond AJ (2007) Tracer v1.5. http://tree.bio.ed.ac.uk

  • Renssen H, Vandenberghe J (2003) Investigation of the relationship between permafrost distribution in NW Europe and extensive winter sea-ice cover in the North Atlantic ocean during the cold phases of the Last Glaciation. Quaternary Sci Rev 22:209–223

    Article  Google Scholar 

  • Searle JB, Kotlík P, Rambau RV, Marková S, Herman JS, McDevitt AD (2009) The Celtic fringe of Britain: insights from small mammal phylogeography. Proc R Soc B 276:4287–4294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro B, Rambaut A, Drummond AJ (2006) Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol Biol Evol 23:7–9

    Article  CAS  PubMed  Google Scholar 

  • Steffensen JP, Andersen KK, Bigler M, Clausen HB, Dahl-Jensen D, Fischer H, Goto-Azuma K, Hansson M, Johnsen SJ, Jouzel J, Masson-Delmotte V, Popp T, Rasmussen SO, Röthlisberger R, Ruth U, Stauffer B, Siggaard-Andersen M-L, Sveinbjörnsdóttir ÁE, Svensson A, White JWC (2008) High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321:680–684

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures Math Life Sci (Amer Math Soc) 17:57–86

    Google Scholar 

  • Triant DA, DeWoody JA (2006) Accelerated molecular evolution in Microtus (Rodentia) as assessed via complete mitochondrial genome sequences. Genetica 128:95–108

    Article  CAS  PubMed  Google Scholar 

  • White TA, Searle JB (2008) The colonization of Scottish islands by the common shrew, Sorex araneus (Eulipotyphla: Soricidae). Biol J Linn Soc 94:797–808

    Article  Google Scholar 

  • Yalden DW (1982) When did the mammal fauna of the British Isles arrive? Mammal Rev 12:1–57

    Article  Google Scholar 

  • Yalden DW (1999) The history of British mammals. Poyser, London

    Google Scholar 

  • Yang Z, Rannala B (2010) Bayesian species delimitation using multilocus sequence data. Proc Natl Acad Sci USA 107:9264–9269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Herman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herman, J.S., Paupério, J., Alves, P.C., Searle, J.B. (2014). Land Bridge Calibration of Rates of Molecular Evolution in a Widespread Rodent. In: Pontarotti, P. (eds) Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life. Springer, Cham. https://doi.org/10.1007/978-3-319-07623-2_4

Download citation

Publish with us

Policies and ethics