A Scalable Approach for Efficiently Generating Structured Dataset Topic Profiles

  • Besnik Fetahu
  • Stefan Dietze
  • Bernardo Pereira Nunes
  • Marco Antonio Casanova
  • Davide Taibi
  • Wolfgang Nejdl
Conference paper

DOI: 10.1007/978-3-319-07443-6_35

Volume 8465 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Fetahu B., Dietze S., Pereira Nunes B., Antonio Casanova M., Taibi D., Nejdl W. (2014) A Scalable Approach for Efficiently Generating Structured Dataset Topic Profiles. In: Presutti V., d’Amato C., Gandon F., d’Aquin M., Staab S., Tordai A. (eds) The Semantic Web: Trends and Challenges. ESWC 2014. Lecture Notes in Computer Science, vol 8465. Springer, Cham

Abstract

The increasing adoption of Linked Data principles has led to an abundance of datasets on the Web. However, take-up and reuse is hindered by the lack of descriptive information about the nature of the data, such as their topic coverage, dynamics or evolution. To address this issue, we propose an approach for creating linked dataset profiles. A profile consists of structured dataset metadata describing topics and their relevance. Profiles are generated through the configuration of techniques for resource sampling from datasets, topic extraction from reference datasets and their ranking based on graphical models. To enable a good trade-off between scalability and accuracy of generated profiles, appropriate parameters are determined experimentally. Our evaluation considers topic profiles for all accessible datasets from the Linked Open Data cloud. The results show that our approach generates accurate profiles even with comparably small sample sizes (10%) and outperforms established topic modelling approaches.

Keywords

Profiling Metadata Vocabulary of Links Linked Data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Besnik Fetahu
    • 1
  • Stefan Dietze
    • 1
  • Bernardo Pereira Nunes
    • 2
  • Marco Antonio Casanova
    • 2
  • Davide Taibi
    • 3
  • Wolfgang Nejdl
    • 1
  1. 1.L3S Research CenterLeibniz Universität HannoverGermany
  2. 2.Department of InformaticsPUC-RioRio de JaneiroBrazil
  3. 3.Institute for Educational TechnologiesCNRPalermoItaly