Skip to main content

The Multi-Mode Resource-Constrained Project Scheduling Problem

  • Chapter
  • First Online:
Handbook on Project Management and Scheduling Vol.1

Part of the book series: International Handbooks on Information Systems ((INFOSYS))

Abstract

This chapter reports on a new solution approach for the multi-mode resource-constrained project scheduling problem (MRCPSP, MPS | prec | C max ). This problem type aims at the selection of a single activity mode from a set of available modes in order to construct a precedence and a (renewable and nonrenewable) resource-feasible project schedule with a minimal makespan. The problem type is known to be \(\mathcal{N}\mathcal{P}\)-hard and has been solved using various exact as well as (meta-)heuristic procedures. The new algorithm splits the problem type into a mode assignment and a single mode project scheduling step. The mode assignment step is solved by a satisfiability (SAT) problem solver and returns a feasible mode selection to the project scheduling step. The project scheduling step is solved using an efficient meta-heuristic procedure from literature to solve the resource-constrained project scheduling problem (RCPSP). However, unlike many traditional meta-heuristic methods in literature to solve the MRCPSP, the new approach executes these two steps in one run, relying on a single priority list. Straightforward adaptations to the pure SAT solver by using pseudo boolean nonrenewable resource constraints has led to a high quality solution approach in a reasonable computational time. Computational results show that the procedure can report similar or sometimes even better solutions than found by other procedures in literature, although it often requires a higher CPU time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In general, a constraint \(y_{1} + y_{2} +\ldots +y_{n} = 1\) can be represented in the CNF as \((y_{1} \vee y_{2} \vee \ldots \vee y_{n}) \wedge (\overline{y_{1}} \vee \overline{y_{2}}) \wedge \ldots \wedge (\overline{y_{1}} \vee \overline{y_{n}}) \wedge (\overline{y_{2}} \vee \overline{y_{3}}) \wedge \ldots \wedge (\overline{y_{n-1}} \vee \overline{y_{n}})\).

References

  • Alcaraz J, Maroto C, Ruiz R (2003) Solving the multi-mode resource-constrained project scheduling problem with genetic algorithms. J Oper Res Soc 54:614–626

    Article  Google Scholar 

  • Bailleux O, Boufkhad Y, Roussel O (2006) A translation of pseudo-boolean constraints to SAT. J Satisf Bool Model Comput 2:191–200

    Google Scholar 

  • Boctor F (1993) Heuristics for scheduling projects with resource restrictions and several resource-duration modes. Int J Prod Res 31:2547–2558

    Article  Google Scholar 

  • Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project scheduling: notation, classification, models, and methods. Eur J Oper Res 112:3–41

    Article  Google Scholar 

  • Chai D, Kuehlmann A (2005) A fast pseudo-boolean constraint solver. IEEE T Comput Aid D 24:305–317

    Article  Google Scholar 

  • Coelho J, Vanhoucke M (2011) Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers. Eur J Oper Res 213:73–82

    Article  Google Scholar 

  • Cook S (1971) The complexity of theorem-proving procedures. In: Proceedings of the third annual ACM symposium on theory of computing, pp 151–158

    Google Scholar 

  • Davis M, Logemann G, Loveland D (1962) A machine program for theorem proving. Comm ACM 5(7):394–397

    Article  Google Scholar 

  • Debels D, Vanhoucke M (2007) A decomposition-based genetic algorithm for the resource-constrained project scheduling problems. Oper Res 55:457–469

    Article  Google Scholar 

  • Debels D, De Reyck B, Leus R, Vanhoucke M (2006) A hybrid scatter search/electromagnetism meta-heuristic for project scheduling. Eur J Oper Res 169:638–653

    Article  Google Scholar 

  • Elloumi S, Fortemps P (2010) A hybrid rank-based evolutionary algorithm applied to multi-mode resource-constrained project scheduling problem. Eur J Oper Res 205:31–41

    Article  Google Scholar 

  • Herroelen W, Demeulemeester E, De Reyck B (1999) A classification scheme for project scheduling problems. In: Wȩglarz J (ed) Project scheduling: recent models, algorithms and applications. Kluwer Academic, Dordrecht, pp 1–26

    Chapter  Google Scholar 

  • Hooker J, Vinay V (1995) Branching rules for satisfiability. J Autom Reasoning 15:359–383

    Article  Google Scholar 

  • Jarboui B, Damak N, Siarry P, Rebai A (2008) A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Appl Math Comput 195:299–308

    Article  Google Scholar 

  • Józefowska J, Mika M, Rózycki R, Waligóra G, Wȩglarz J (2001) Simulated annealing for multi-mode resource-constrained project scheduling. Ann Oper Res 102:137–155

    Article  Google Scholar 

  • Kolisch R, Drexl A (1997) Local search for nonpreemptive multi-mode resource-constrained project scheduling. IIE Trans 29:987–999

    Google Scholar 

  • Kolisch R, Hartmann S (2006) Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur J Oper Res 174:23–37

    Article  Google Scholar 

  • Kolisch R, Sprecher A (1996) PSPLIB: A project scheduling problem library. Eur J Oper Res 96:205–216

    Article  Google Scholar 

  • Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of resource-constrained project scheduling problems. Manag Sci 41:1693–1703

    Article  Google Scholar 

  • Kullmann O (2006) The SAT 2005 solver competition on random instances. J Satisf Bool Model Comput 2:61–102

    Google Scholar 

  • Li K, Willis R (1992) An iterative scheduling technique for resource-constrained project scheduling. Eur J Oper Res 56:370–379

    Article  Google Scholar 

  • Lova A, Tormos P, Cervantes M, Barber F (2009) An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes. Int J Prod Econ 117:302–316

    Article  Google Scholar 

  • Markov I, Sakallah K, Ramani A, Aloul F (2002) Generic ILP versus specialized 0–1 ILP: an update. In: Proceedings of the international conference on computer-aided design (ICCAD ’02), pp 450–457

    Google Scholar 

  • Marques-Silva J, Sakallah K (1999) GRASP: a search algorithm for propositional satisfiability. IEEE T Comput 48:506–521

    Article  Google Scholar 

  • Ranjbar M, De Reyck B, Kianfar F (2009) A hybrid scatter-search for the discrete time/resource trade-off problem in project scheduling. Eur J Oper Res 193:35–48

    Article  Google Scholar 

  • Talbot F (1982) Resource-constrained project scheduling problem with time-resource trade-offs: the nonpreemptive case. Manag Sci 28:1197–1210

    Article  Google Scholar 

  • Valls V, Quintanilla S, Ballestín F (2003) Resource-constrained project scheduling: A critical activity reordering heuristic. Eur J Oper Res 149:282–301

    Article  Google Scholar 

  • Valls V, Ballestín F, Quintanilla S (2004) A population based approach to the resource-constrained project scheduling problem. Ann Oper Res 131:305–324

    Article  Google Scholar 

  • Valls V, Ballestín F, Quintanilla S (2005) Justification and RCPSP: a technique that pays. Eur J Oper Res 165(2):375–386

    Article  Google Scholar 

  • Valls V, Ballestín F, Quintanilla S (2008) A hybrid genetic algorithm for the resource-constrained project scheduling problem. Eur J Oper Res 185(2):495–508

    Article  Google Scholar 

  • Van Peteghem V, Vanhoucke M (2010) A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. Eur J Oper Res 201:409–418

    Article  Google Scholar 

  • Wang L, Fang C (2011) An effective shuffled frog-leaping algorithm for multi-mode resource-constrained project scheduling problem. Inform Sci 181:4804–4822

    Article  Google Scholar 

  • Wang L, Fang C (2012) An effective estimation of distribution algorithm for the multi-mode resource-constrained project scheduling problem. Comput Oper Res 39:449–460

    Article  Google Scholar 

  • Wȩglarz J, Józefowska J, Mika M, Waligóra G (2011) Project scheduling with finite or infinite number of activity processing modes: a survey. Eur J Oper Res 208:177–205

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Coelho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Coelho, J., Vanhoucke, M. (2015). The Multi-Mode Resource-Constrained Project Scheduling Problem. In: Schwindt, C., Zimmermann, J. (eds) Handbook on Project Management and Scheduling Vol.1. International Handbooks on Information Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-05443-8_22

Download citation

Publish with us

Policies and ethics