Skip to main content

Simultaneous Inference of Cancer Pathways and Tumor Progression from Cross-Sectional Mutation Data

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8394))

Abstract

Recent cancer sequencing studies provide a wealth of somatic mutation data from a large number of patients. One of the most intriguing and challenging questions arising from this data is to determine whether the temporal order of somatic mutations in a cancer follows any common progression. Since we usually obtain only one sample from a patient, such inferences are commonly made from cross-sectional data from different patients. This analysis is complicated by the extensive variation in the somatic mutations across different patients, variation that is reduced by examining combinations of mutations in various pathways. Thus far, methods to reconstruction tumor progression at the pathway level have restricted attention to known, a priori defined pathways.

In this work we show how to simultaneously infer pathways and the temporal order of their mutations from cross-sectional data, leveraging on the exclusivity property of driver mutations within a pathway. We define the Pathway Linear Progression Model, and derive a combinatorial formulation for the problem of finding the optimal model from mutation data. We show that while this problem is NP-hard, with enough samples its optimal solution uniquely identifies the correct model with high probability even when errors are present in the mutation data. We then formulate the problem as an integer linear program (ILP), which allows the analysis of datasets from recent studies with large number of samples. We use our algorithm to analyze somatic mutation data from three cancer studies, including two studies from The Cancer Genome Atlas (TCGA) on large number of samples on colorectal cancer and glioblastoma. The models reconstructed with our method capture most of the current knowledge of the progression of somatic mutations in these cancer types, while also providing new insights on the tumor progression at the pathway level.

This work is supported by NIH grant R01HG007069-01 and by NSF grant IIS-1247581.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attolini, C.S.-O., Cheng, Y.-K., Beroukhim, R., Getz, G., Abdel-Wahab, O., et al.: A mathematical framework to determine the temporal sequence of somatic genetic events in cancer. Proc. Natl. Acad. Sci. U S A 107(41), 17604–17609 (2010)

    Article  MATH  Google Scholar 

  2. Beerenwinkel, N., Sullivant, S.: Markov models for accumulating mutations. Biometrika 96(3), 645–661 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beerenwinkel, N., Eriksson, N., Sturmfels, B.: Evolution on distributive lattices. J. Theor. Biol. 242(2), 409–420 (2006)

    Article  MathSciNet  Google Scholar 

  4. Beerenwinkel, N., Eriksson, N., Sturmfels, B.: Conjunctive bayesian networks. Bernoulli 13(4), 893–909 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beerenwinkel, N., Rahnenführer, J., Däumer, M., Hoffmann, D., Kaiser, R., et al.: Learning multiple evolutionary pathways from cross-sectional data. J. Comput. Biol. 12(6), 584–598 (2005)

    Article  Google Scholar 

  6. Beerenwinkel, N., Rahnenführer, J., Kaiser, R., Hoffmann, D., Selbig, J., et al.: Mtreemix: a software package for learning and using mixture models of mutagenetic trees. Bioinformatics 21(9), 2106–2107 (2005)

    Article  Google Scholar 

  7. Brennan, C.W., Verhaak, R.G.W., McKenna, A., Campos, B., Noushmehr, H., et al.: The somatic genomic landscape of glioblastoma. Cell 155(2), 462–477 (2013)

    Article  Google Scholar 

  8. Cheng, Y.-K., Beroukhim, R., Levine, R.L., Mellinghoff, I.K., Holland, E.C., et al.: A mathematical methodology for determining the temporal order of pathway alterations arising during gliomagenesis. PLoS Comput. Biol. 8(1), e1002337 (2012)

    Google Scholar 

  9. Ciriello, G., Cerami, E., Sander, C., Schultz, N.: Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 22(2), 398–406 (2012)

    Article  Google Scholar 

  10. Dees, N.D., Zhang, Q., Kandoth, C., Wendl, M.C., Schierding, W., et al.: Music: identifying mutational significance in cancer genomes. Genome Res. 22(8), 1589–1598 (2012)

    Article  Google Scholar 

  11. Desper, R., Jiang, F., Kallioniemi, O.P., Moch, H., Papadimitriou, C.H., et al.: Inferring tree models for oncogenesis from comparative genome hybridization data. J. Comput. Biol. 6(1), 37–51 (1999)

    Article  Google Scholar 

  12. Desper, R., Jiang, F., Kallioniemi, O.P., Moch, H., Papadimitriou, C.H., et al.: Distance-based reconstruction of tree models for oncogenesis. J. Comput. Biol. 7(6), 789–803 (2000)

    Article  Google Scholar 

  13. Efron, B., Tibshirani, R.: An introduction to the bootstrap, 1st edn. Chapman and Hall (1994)

    Google Scholar 

  14. Fearon, E.R., Vogelstein, B.: A genetic model for colorectal tumorigenesis. Cell 61(5), 759–767 (1990)

    Article  Google Scholar 

  15. Fearon, E.R.: Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 6, 479–507 (2011)

    Article  Google Scholar 

  16. Gerstung, M., Baudis, M., Moch, H., Beerenwinkel, N.: Quantifying cancer progression with conjunctive bayesian networks. Bioinformatics 25(21), 2809–2815 (2009)

    Article  Google Scholar 

  17. Gerstung, M., Eriksson, N., Lin, J., Vogelstein, B., Beerenwinkel, N.: The temporal order of genetic and pathway alterations in tumorigenesis. PLoS One 6(11), e27136 (2011)

    Google Scholar 

  18. Hjelm, M., Höglund, M., Lagergren, J.: New probabilistic network models and algorithms for oncogenesis. J. Comput. Biol. 13(4), 853–865 (2006)

    Article  MathSciNet  Google Scholar 

  19. Kandoth, C., McLellan, M.D., Vandin, F., Ye, K., Niu, B., et al.: Mutational landscape and significance across 12 major cancer types. Nature 502(7471), 333–339 (2013)

    Article  Google Scholar 

  20. Lawrence, M.S., Stojanov, P., Polak, P., Kryukov, G.V., Cibulskis, K., et al.: Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457), 214–218 (2013)

    Article  Google Scholar 

  21. Leiserson, M.D.M., Blokh, D., Sharan, R., Raphael, B.J.: Simultaneous identification of multiple driver pathways in cancer. PLoS Comput. Biol. 9(5), e1003054 (2013)

    Google Scholar 

  22. Miller, C.A., Settle, S.H., Sulman, E.P., Aldape, K.D., Milosavljevic, A.: Discovering functional modules by identifying recurrent and mutually exclusive mutational patterns in tumors. BMC Med. Genomics 4, 34 (2011)

    Article  Google Scholar 

  23. Rahnenführer, J., Beerenwinkel, N., Schulz, W.A., Hartmann, C., von Deimling, A., et al.: Estimating cancer survival and clinical outcome based on genetic tumor progression scores. Bioinformatics 21(10), 2438–2446 (2005)

    Article  Google Scholar 

  24. Sakoparnig, T., Beerenwinkel, N.: Efficient sampling for bayesian inference of conjunctive bayesian networks. Bioinformatics 28(18), 2318–2324 (2012)

    Article  Google Scholar 

  25. Shahrabi Farahani, H., Lagergren, J.: Learning oncogenetic networks by reducing to mixed integer linear programming. PLoS One 8(6), e65773 (2013)

    Google Scholar 

  26. The Cancer Genome Atlas Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216), 1061–1068 (2008)

    Google Scholar 

  27. The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407), 330–337 (2012)

    Google Scholar 

  28. Tofigh, A., Sjölund, E., Höglund, M., Lagergren, J.: A global structural em algorithm for a model of cancer progression. Advances in Neural Information Processing Systems 24, 163–171 (2011)

    Google Scholar 

  29. Vandin, F., Upfal, E., Raphael, B.J.: De novo discovery of mutated driver pathways in cancer. Genome Res. 22(2), 375–385 (2012)

    Article  Google Scholar 

  30. Vandin, F., Upfal, E., Raphael, B.J.: Finding driver pathways in cancer: models and algorithms. Algorithms Mol. Biol. 7(1), 23 (2012)

    Article  Google Scholar 

  31. Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz Jr., L.A., et al.: Cancer genome landscapes. Science 339(6127), 1546–1558 (2013)

    Article  Google Scholar 

  32. Wood, L.D., Parsons, D.W., Jones, S., Lin, J., Sjöblom, T., et al.: The genomic landscapes of human breast and colorectal cancers. Science 318(5853), 1108–1113 (2007)

    Article  Google Scholar 

  33. Yeang, C.-H., McCormick, F., Levine, A.: Combinatorial patterns of somatic gene mutations in cancer. FASEB J. 22(8), 2605–2622 (2008)

    Article  Google Scholar 

  34. Zhang, J., Baran, J., Cros, A., Guberman, J.M., Haider, S., et al.: International Cancer Genome Consortium Data Portal–a one-stop shop for cancer genomics data. Database (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Raphael, B.J., Vandin, F. (2014). Simultaneous Inference of Cancer Pathways and Tumor Progression from Cross-Sectional Mutation Data. In: Sharan, R. (eds) Research in Computational Molecular Biology. RECOMB 2014. Lecture Notes in Computer Science(), vol 8394. Springer, Cham. https://doi.org/10.1007/978-3-319-05269-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05269-4_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05268-7

  • Online ISBN: 978-3-319-05269-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics