Skip to main content

POD-Galerkin Modeling and Sparse-Grid Collocation for a Natural Convection Problem with Stochastic Boundary Conditions

  • Conference paper
  • First Online:
Sparse Grids and Applications - Munich 2012

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 97))

Abstract

The computationally most expensive part of the stochastic collocation method are usually the numerical solutions of a deterministic equation at the collocation points. We propose a way to reduce the total computation time by replacing the deterministic model with its Galerkin projection on the space spanned by a small number of basis functions. The proper orthogonal decomposition (POD) is used to compute the basis functions from the solutions of the deterministic model at a few collocation points. We consider the computation of the statistics of the Nusselt number for a two-dimensional stationary natural convection problem with a stochastic temperature boundary condition. It turns out that for the estimation of the mean and the probability density, the number of finite element simulations can be significantly reduced by the help of the POD-Galerkin reduced-order model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Boyaval, C. Le Bris, Y. Maday, N. Nguyen, A. Patera, A reduced basis approach for variational problems with stochastic parameters: application to heat conduction with variable Robin coefficient. Comput. Methods Appl. Mech. Eng. 198, 3187–3206 (2009)

    Article  MATH  Google Scholar 

  2. H.-J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  Google Scholar 

  3. P. Chen, A. Quarteroni, G. Rozza, Comparison between reduced basis and stochastic collocation methods for elliptic problems. MATHICSE Report 34.2012, Mathematics Institute of Computational Science and Engineering, École Polytechnique Fédérale de Lausanne, 2012

    Google Scholar 

  4. P. Chen, A. Quarteroni, G. Rozza, A weighted reduced basis method for elliptic partial differential equations with random input data. MATHICSE Report 04.2013, Mathematics Institute of Computational Science and Engineering, École Polytechnique Fédérale de Lausanne, 2013

    Google Scholar 

  5. C. Clenshaw, A. Curtis, A method for numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  6. J.L. Eftang, E.M. Rønquist, Evaluation of flux integral outputs for the reduced basis method. Math. Models Methods Appl. Sci. 20, 351–374 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. H.C. Elman, Q. Liao, Reduced basis collocation methods for partial differential equations with random coefficients. Technical Report CS-TR-5011, Computer Science Department, University of Maryland, 2012

    Google Scholar 

  8. B. Ganapathysubramanian, N. Zabaras, Sparse grid collocation schemes for stochastic natural convection problems. J. Comput. Phys. 225, 652–685 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Garke, Sparse grids in a nutshell, in Sparse Grids and Applications, ed. by J. Garke, M. Griebel (Springer, Heidelberg, 2013), pp. 57–80

    Google Scholar 

  10. R. Ghanem, P. Spanos, Stochastic Finite Elements: A Spectral Approach (Dover publications, New York, 1991)

    Book  MATH  Google Scholar 

  11. W.R. Graham, J. Peraire, K.Y. Tang, Optimal control of vortex shedding using low-order models. Part I – open-loop model development. Int. J. Numer. Methods Eng. 44, 945–972 (1999)

    Google Scholar 

  12. P.M. Gresho, R.L. Sani, Incompressible Flow and the Finite Element method (Wiley, Chichester, 2000)

    MATH  Google Scholar 

  13. M.D. Gunzburger, Finite Element Methods for Viscous Incompressible Flows. Computer Science and Scientific Computing (Academic, Boston, 1989)

    MATH  Google Scholar 

  14. M.D. Gunzburger, J.S. Peterson, J.N. Shadid, Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data. Comput. Methods Appl. Mech. Eng. 196, 1030–1047 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. P. Holmes, J. Lumley, G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry (Cambridge University Press, Cambridge, 1996)

    Book  MATH  Google Scholar 

  16. J.D. Jakeman, S.G. Roberts, Local and dimension adaptive stochastic collocation for uncertainty quantification, in Sparse Grids and Applications, ed. by J. Garke, M. Griebel (Springer, Heidelberg, 2013), pp. 181–204

    Google Scholar 

  17. D. Knezevic, N. Nguyen, A.T. Patera, Reduced basis approximation and a posteriori error estimation for the parametrized unsteady boussinesq equation. Math. Models Methods Appl. Sci. 21, 1415–1442 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. K. Kunisch, S. Volkwein, Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102, 345–371 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. B. Peherstorfer, S. Zimmer, H.-J. Bungartz, Model reduction with the reduced basis method and sparse grids, in Sparse Grids and Applications, ed. by J. Garke, M. Griebel (Springer, Heidelberg, 2013), pp. 223–242

    Google Scholar 

  20. M. Powell, A Fortran subroutine for solving systems of nonlinear algebraic equations, in Numerical Methods for Nonlinear Algebraic Equations, Chap. 7, ed. by P. Rabinowitz (Gordon and Breach, London, 1970), pp. 115–161

    Google Scholar 

  21. G. Rozza, D.B.P. Huynh, A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15, 229–275 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. B. Schieche, J. Lang, Uncertainty quantification for thermo-convective Poiseuille flow using stochastic collocation. Int. J. Comput. Sci. Eng. (2014, in press)

    Google Scholar 

  23. L. Sirovich, Turbulence and the dynamics of coherent structures. Parts I, II and III. Q. Appl. Math. 45, 561–571 (1987)

    Google Scholar 

  24. S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov. Math. Dokl. 4, 240–243 (1963)

    Google Scholar 

  25. C. Taylor, P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique. Int. J. Comput. Fluids 1, 73–100 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  26. J. Waldvogel, Fast construction of the Fejér and Clenshaw-Curtis quadrature rules. BIT Numer. Math. 46, 195–202 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. D. Xiu, J.S. Hesthaven, High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27, 1118–1139 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Lang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ullmann, S., Lang, J. (2014). POD-Galerkin Modeling and Sparse-Grid Collocation for a Natural Convection Problem with Stochastic Boundary Conditions. In: Garcke, J., Pflüger, D. (eds) Sparse Grids and Applications - Munich 2012. Lecture Notes in Computational Science and Engineering, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-319-04537-5_13

Download citation

Publish with us

Policies and ethics