Skip to main content

Age-Related Variation in the Biomechanical and Structural Properties of the Corneo-Scleral Tunic

  • Chapter
  • First Online:
Mechanical Properties of Aging Soft Tissues

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

With increasing age, the mechanical performance of the cornea and sclera is impaired due to structural changes in the major structural proteins, namely collagens , proteoglycans and elastin. In addition, the level of hydration in the ocular tunic decreases over time. These structural changes profoundly impact on the biomechanical properties of the corneo-scleral tunic. This chapter focuses on the structural and biomechanical changes that occur in the corneo-scleral tunic with age. The techniques that are utilized in order to determine the mechanical properties of both the cornea and sclera are discussed, and a comprehensive review of studies which have characterized age-related changes in ocular biomechanics are presented. The cornea is found to increase in stiffness with age and all the characteristics of viscoelastic behavior (creep , stress-relaxation and hysteresis) decrease with age. Similarly, the stiffness of the sclera increases markedly with age although the reported magnitude of stiffening varies significantly from one study to another. This may be related to variations amongst the different techniques that have been utilized. Increased stiffening in the cornea and the sclera with age is strongly associated with the increase in collagen crosslinking that occurs as part of the natural aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aghaian E, Choe JE, Lin S, Stamper RL (2004) Central corneal thickness of Caucasians, Chinese, Hispanics, Filipinos, African Americans, and Japanese in a glaucoma clinic. Ophthalmology 111:2211–2219

    Google Scholar 

  2. Aghamohammadzadeh H, Newton RH, Meek KM (2004) X-ray scattering used to map the preferred collagen orientation in the human cornea and limbus. Structure 12:249–256

    Google Scholar 

  3. Alastrue V, Calvo B, Pena E, Doblare M (2006) Biomechanical modeling of refractive corneal surgery. J Biomech Eng 128:150–160

    Google Scholar 

  4. Albon J, Purslow PP, Karwatowski WS, Easty DL (2000) Age related compliance of the lamina cribrosa in human eyes. Br J Ophthalmol 84:318–323

    Google Scholar 

  5. Anderson K, El-Sheikh A, Newson T (2004) Application of structural analysis to the mechanical behaviour of the cornea. J R Soc Interface 1:3–15

    Google Scholar 

  6. Avetisov ES, Savitskaya NF, Vinetskaya MI, Iomdina EN (1983) A study of biochemical and biomechanical qualities of normal and myopic eye sclera in humans of different age groups. Metab Pediatr Syst Ophthalmol 7:183–188

    Google Scholar 

  7. Bailey AJ (1987) Structure, function and aging of the collagens of the eye. Eye Trans Ophthalmol Soc UK 1:175–183

    Google Scholar 

  8. Battaglioli JL, Kamm RD (1984) Measurements of the compressive properties of scleral tissue. Invest Ophthalmol Vis Sci 25:59–65

    Google Scholar 

  9. Ben-Zvi A, Rodrigues MM, Krachmer JH, Fujikawa LS (1986) Immunohistochemical characterization of extracellular matrix in the developing human cornea. Curr Eye Res 5:105–117

    Google Scholar 

  10. Bisplinghoff JA, McNally C, Manoogian SJ, Duma SM (2009) Dynamic material properties of the human sclera. J Biomech 42:1493–1497

    Google Scholar 

  11. Boote C, Dennis S, Huang Y, Quantock AJ, Meek KM (2005) Lamellar orientation in human cornea in relation to mechanical properties. J Struct Biol 149:1–6

    Google Scholar 

  12. Boote C, Dennis S, Newton RH, Puri H, Meek KM (2003) Collagen fibrils appear more closely packed in the prepupillary cornea: optical and biomechanical implications. Invest Ophthalmol Vis Sci 44:2941–2948

    Google Scholar 

  13. Boote C, Hayes S, Abahussin M, Meek KM (2006) Mapping collagen organization in the human cornea: left and right eyes are structurally distinct. Invest Ophthalmol Vis Sci 47:901–908

    Google Scholar 

  14. Boote C, Hayes S, Young RD, Kamma-Lorger CS, Hocking PM, Elsheikh A, Inglehearn CF, Ali M, Meek KM (2009) Ultrastructural changes in the retinopathy, globe enlarged (rge) chick cornea. J Struct Biol 166:195–204

    Google Scholar 

  15. Boyce BL, Grazier JM, Jones RE, Nguyen TD (2008) Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials 29:3896–3904

    Google Scholar 

  16. Brown CT, Vural M, Johnson M, Trinkaus-Randell V (1994) Age-related changes of scleral hydration and sulfated glycosaminoglycans. Mech Aging Dev 77:97–107

    Google Scholar 

  17. Brubaker RF, Ezekiel S, Chin L, Young L, Johnson SA, Beeler GW (1975) The stress-strain behavior of the corneoscleral envelope of the eye I. Development of a system for making in vivo measurements using optical interferometry. Exp Eye Res 21:37–46

    Google Scholar 

  18. Brubaker RF, Johnson SA, Beeler GW (1977) The stress-strain behavior of the corneoscleral envelope of the eye II. In vivo measurements in rhesus monkey eyes. Exp Eye Res 24:425–435

    Google Scholar 

  19. Burgoyne CF, Downs JC (2008) Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. J Glaucoma 17:318–328

    Google Scholar 

  20. Buzard KA (1992) Introduction to biomechanics of the cornea. Refract Corneal Surg 8:127–138

    Google Scholar 

  21. Caroline PJ (2001) Contemporary orthokeratology. Cont Lens Anterior Eye 24:41–46

    Google Scholar 

  22. Chakravarti S, Zhang G, Chervoneva I, Roberts L, Birk D (2006) Collagen fibril assembly during postnatal development and dysfunctional regulation in the lumican-deficient murine cornea. Dev Dyn 235:2493–2506

    Google Scholar 

  23. Chen MJ, Liu YT, Tsai CC, Chen YC, Chou CK, Lee SM (2009) Relationship between central corneal thickness, refractive error, corneal curvature, anterior chamber depth and axial length. J Chin Med Assoc 72:133–137

    Google Scholar 

  24. Cheng S, Clarke EC, Bilston LE (2009) The effects of preconditioning strain on measured tissue properties. J Biomech 42:1360–1362

    Google Scholar 

  25. Clark JH (1932) A method for measuring elasticity in vivo and results obtained on the eyeball at different intraocular pressures 101:474–481

    Google Scholar 

  26. Clark JI (2004) Order and disorder in the transparent media of the eye. Exp Eye Res 78:427–432

    Google Scholar 

  27. Conza N (2005) Part 3: tissue preconditioning. Exp Tech 29:43–46

    Google Scholar 

  28. Coster D (2001) Cornea. BMJ Publishing Group, London

    Google Scholar 

  29. Coudrillier B, Tian J, Alexander S, Myers KM, Quigley HA, Nguyen TD (2012) Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Invest Ophthalmol Vis Sci 53:1714–1728

    Google Scholar 

  30. Curtin BJ (1969) Physiopathologic aspects of scleral stress-strain. Trans Am Ophthalmol Soc 67:417–461

    Google Scholar 

  31. Daxer A, Fratzl P (1997) Collagen fibril orientation in the human corneal stroma and its implication in keratoconus. Invest Ophthalmol Vis Sci 38:121–129

    Google Scholar 

  32. Daxer A, Misof K, Grabner B, Ettl A, Fratzl P (1998) Collagen fibrils in the human corneal stroma: structure and aging. Invest Ophthalmol Vis Sci 39:644–648

    Google Scholar 

  33. Doughty MJ, Jonuscheit S (2007) An assessment of regional differences in corneal thickness in normal human eyes, using the Orbscan II or ultrasound pachymetry. Optometry 78:181–190

    Google Scholar 

  34. Downs JC, Ensor ME, Bellezza AJ, Thompson HW, Hart RT, Burgoyne CF (2001) Posterior scleral thickness in perfusion-fixed normal and early-glaucoma monkey eyes. Invest Ophthalmol Vis Sci 42:3202–3208

    Google Scholar 

  35. Downs JC, Suh JKF, Thomas KA, Bellezza AJ, Burgoyne CF, Hart RT (2003) Viscoelastic characterization of peripapillary sclera: material properties by quadrant in rabbit and monkey eyes. J Biomech Eng 125:124–131

    Google Scholar 

  36. Downs JC, Suh JK, Thomas KA, Bellezza AJ, Hart RT, Burgoyne CF (2005) Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes. Invest Ophthalmol Vis Sci 46:540–546

    Google Scholar 

  37. Drubaix I, Legeais J, Malek-Chehire N, Savoldelli M, Menasche M, Robert L, Renard G, Pouliquen Y (1996) Collagen synthesised in fluorocarbon polymer implant in the rabbit cornea. Exp Eye Res 62:367–376

    Google Scholar 

  38. Dubbelman M, Weeber HA, van der Heijde RGL, Völker-Dieben HJ (2002) Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography. Acta Ophthalmol Scand 80:379–383

    Google Scholar 

  39. Dupps WJ Jr (2007) Hysteresis: new mechanospeak for the ophthalmologist. J Cataract Refract Surg 33:1499–1501

    Google Scholar 

  40. Eilaghi A, Flanagan JG, Simmons CA, Ethier CR (2010) Effects of scleral stiffness properties on optic nerve head biomechanics. Ann Biomed Eng 38:1586–1592

    Google Scholar 

  41. Eilaghi A, Flanagan JG, Tertinegg I, Simmons CA, Wayne Brodland G, Ross Ethier C (2010b) Biaxial mechanical testing of human sclera. J Biomech 43:1696–1701

    Google Scholar 

  42. Elsheikh A, Alhasso D, Rama P (2008) Assessment of the epithelium’s contribution to corneal biomechanics. Exp Eye Res 86:445–451

    Google Scholar 

  43. Elsheikh A, Anderson K (2005) Comparative study of corneal strip extensometry and inflation tests. J R Soc Interface 2:177–185

    Google Scholar 

  44. Elsheikh A, Geraghty B, Alhasso D, Knappett J, Campanelli M, Rama P (2010) Regional variation in the biomechanical properties of the human sclera. Exp Eye Res 90:624–633

    Google Scholar 

  45. Elsheikh A, Geraghty B, Rama P, Campanelli M, Meek KM (2010) Characterization of age-related variation in corneal biomechanical properties. J R Soc Interface 7:1475–1485

    Google Scholar 

  46. Elsheikh A, Ross S, Alhasso D, Rama P (2009) Numerical study of the effect of corneal layered structure on ocular biomechanics. Curr Eye Res 34:26–35

    Google Scholar 

  47. Elsheikh A, Wang D (2007) Numerical modelling of corneal biomechanical behaviour. Comput Methods Biomech Biomed Engin 10:85–95

    Google Scholar 

  48. Elsheikh A, Wang D, Brown M, Rama P, Campanelli M, Pye D (2007) Assessment of corneal biomechanical properties and their variation with age. Curr Eye Res 32:11–19

    Google Scholar 

  49. Elsheikh A, Wang D, Pye D (2007) Determination of the modulus of elasticity of the human cornea. J Refract Surg 23:808–818

    Google Scholar 

  50. Elsheikh A, Wang D, Rama P, Campanelli M, Garway-Heath D (2008) Experimental assessment of human corneal hysteresis. Curr Eye Res 33:205–213

    Google Scholar 

  51. Ethier CR, Johnson M, Ruberti J (2004) Ocular biomechanics and biotransport. Annu Invest Ophthalmol Vis Sci 45(12):4378–4387

    Google Scholar 

  52. Eysteinsson T, Jonasson F, Sasaki H, Arnarsson A, Sverrisson T, Sasaki K, Stefánsson E (2002) Central corneal thickness, radius of the corneal curvature and intraocular pressure in normal subjects using non-contact techniques: Reykjavik eye study. Acta Ophthalmol Scand 80:11–15

    Google Scholar 

  53. Fazio MA, Grytz R, Morris JS, Bruno L, Gardiner SK, Girkin CA, Downs JC (2013) Age-related changes in human peripapillary scleral strain. Biomech Model Mechanobiol 12:1–13

    Google Scholar 

  54. Fernandez DC, Niazy AM, Kurtz RM, Djotyan GP, Juhasz T (2006) A finite element model for ultrafast laser-lamellar keratoplasty. Ann Biomed Eng 34:169–183

    Google Scholar 

  55. Forrester J, Dick A, McMenamin P, Lee W (1999) The eye: basic sciences in practice. W.B. Saunders, London

    Google Scholar 

  56. Friberg TR, Lace JW (1988) A comparison of the elastic properties of human choroid and sclera. Exp Eye Res 47:429–436

    Google Scholar 

  57. Friedenwald JS (1952) The eye. In: Lansing AI (ed) Cowdry’s problems of aging. Williams and Wilkins Company, Baltimore

    Google Scholar 

  58. Fullwood NJ, Martin FL, Bentley AJ, Lee JP, Lee SJ (2011) Imaging sclera with hard X-ray microscopy. Micron 42:506–511

    Google Scholar 

  59. Geraghty B, Jones SW, Rama P, Akhtar R, Elsheikh A (2012) Age-related variations in the biomechanical properties of human sclera. J Mech Behav Biomed Mater 16:181–191

    Google Scholar 

  60. Girard M, Suh JKF, Hart RT, Burgoyne CF, Downs JC (2007) Effects of storage time on the mechanical properties of rabbit peripapillary sclera after enucleation. Curr Eye Res 32:465–470

    Google Scholar 

  61. Girard MJ, Suh JK, Bottlang M, Burgoyne CF, Downs JC (2009a) Scleral biomechanics in the aging monkey eye. Invest Ophthalmol Vis Sci 52: 5656–5659

    Google Scholar 

  62. Girard MJA, Downs JC, Bottlang M, Burgoyne CF, Suh JKF (2009b) Peripapillary and posterior scleral mechanics—Part II: experimental and inverse finite element characterization. J Biomech Eng 131:051012

    Google Scholar 

  63. Girard MJA, Francis Suh JK, Bottlang M, Burgoyne CF, Downs JC (2011) Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations. Invest Ophthalmol Vis Sci 52:5656–5669

    Google Scholar 

  64. Grant CA, Thomson NH, Savage MD, Woon HW, Greig D (2011) Surface characterisation and biomechanical analysis of the sclera by atomic force microscopy. J Mech Behav Biomed Mater 4:535–540

    Google Scholar 

  65. Greene PR (1985) Stress-strain behavior for curved exponential strips. Bull Math Biol 47:757–764

    MATH  Google Scholar 

  66. Greene PR, McMahon TA (1979) Scleral creep versus temperature and pressure in vitro. Exp Eye Res 29:527–537

    Google Scholar 

  67. Haider KM, Mickler C, Oliver D, Moya FJ, Cruz OA, Davitt BV (2008) Age and racial variation in central corneal thickness of preschool and school-aged children. J Pediatr Ophthalmol Strabismus 45:227–233

    Google Scholar 

  68. Han M, Giese G, Bille JF (2005) Second harmonic generation imaging of collagen fibrils in cornea and sciera. Opt Express 13:5791–5797

    Google Scholar 

  69. Harper CL, Boulton ME, Bennett D, Marcyniuk B, Jarvis-Evans JH, Tullo AB, Ridgway AE (1996) Diurnal variations in human corneal thickness. Br J Ophthalmol 80:1068–1072

    Google Scholar 

  70. Hassan AU, Hassan G, Rasool Z, Hassan S (2013) Clinical outcomes of elastin fibre defects. Cytol Histol 1:166

    Google Scholar 

  71. He X, Liu J (2009) A quantitative ultrasonic spectroscopy method for noninvasive determination of corneal biomechanical properties. Invest Ophthalmol Vis Sci 50:5148–5154

    Google Scholar 

  72. Heathcote JG (1994) Collagen and its disorders. In: Garner A, Klintworth GK (eds) Pathobiology of ocular disease: a dynamic approach. Taylor & Francis, New York

    Google Scholar 

  73. Hirano K, Nakamura M, Kobayashi M, Kobayashi K, Hoshino T, Awaya S (1993) Long-spacing collagen in the human corneal stroma. Jpn J Ophthalmol 37:148–155

    Google Scholar 

  74. Hjortdal JØ (1996) Regional elastic performance of the human cornea. J Biomech 29:931–942

    Google Scholar 

  75. Hogan MJ, Alvarado J (1969) Ultrastructure of deep corneolimbal region. Doc Ophthalmol 26:9

    Google Scholar 

  76. Hogan MJ, Zimmerman LE (1962) Ophthalmic pathology. W.B. Saunders, London

    Google Scholar 

  77. Hollman KW, Emelianov SY, Neiss JH, Jotyan G, Spooner GJR, Juhasz T, Kurtz RM, O’Donnell M (2002) Strain imaging of corneal tissue with an ultrasound elasticity microscope. Cornea 21:68–73

    Google Scholar 

  78. Hollman KW, Shtein RM, Tripathy S, Kim K (2013) Using an ultrasound elasticity microscope to map three-dimensional strain in a porcine cornea. Ultrasound Med Biol 39:1451–1459

    Google Scholar 

  79. Ihanamaki T, Salminen H, Saamanen AM, Pelliniemi LJ, Hartmann DJ, Sandberg-Lall M, Vuorio E (2001) Age-dependent changes in the expression of matrix components in the mouse eye. Exp Eye Res 72:423–431

    Google Scholar 

  80. Jayasuriya AC, Ghosh S, Scheinbeim JI, Lubkin V, Bennett G, Kramer P (2003) A study of piezoelectric and mechanical anisotropies of the human cornea. Biosens Bioelectron 18:381–387

    Google Scholar 

  81. Jonuscheit S, Doughty MJ, Button NF (2007) On the use of Orbscan II to assess the peripheral corneal thickness in humans: a comparison with ultrasound pachometry measures. Ophthalmic Physiol Opt 27:179–189

    Google Scholar 

  82. Jue B, Maurice DM (1986) The mechanical properties of the rabbit and human cornea. J Biomech 19:847–853

    Google Scholar 

  83. Kampmeier J, Radt B, Birngruber R, Brinkmann R (2000) Thermal and biomechanical parameters of porcine cornea. Cornea 19:355–363

    Google Scholar 

  84. Kanai A, Kaufman HE (1973) Electron microscopic studies of corneal stroma: aging changes of collagen fibers. Ann Ophthalmol 5:285–287(passim)

    Google Scholar 

  85. Kaufmann C, Bachmann LM, Robert YC, Thiel MA (2006) Ocular pulse amplitude in healthy subjects as measured by dynamic contour tonometry. Arch Ophthalmol 124:1104–1108

    Google Scholar 

  86. Keeley FW, Morin JD, Vesely I (1984) Characterization of collagen from normal human sclera. Exp Eye Res 39:533–542

    Google Scholar 

  87. Kling S, Remon L, Pérez-Escudero A, Merayo-Lloves J, Marcos S (2010) Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments. Invest Ophthalmol Vis Sci 51:3961–3968

    Google Scholar 

  88. Koga T, Inatani M, Hirata A, Inomata Y, Zako M, Oohira A, Gotoh T, Mori M, Tanihara H (2005) Expression of a chondroitin sulfate proteoglycan, versican (PG-M), during development of rat cornea. Curr Eye Res 30:455–463

    Google Scholar 

  89. Kokott W (1938) Über mechanisch-funktionelle Strukturen des Auges. Albrecht v Grafes Arch Ophthalmol 118:424–485

    Google Scholar 

  90. Komai Y, Ushiki T (1991) The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci 32:2244–2258

    Google Scholar 

  91. Krag S, Olsen T, Andreassen TT (1997) Biomechanical characteristics of the human anterior lens capsule in relation to age. Invest Ophthalmol Vis Sci 38:357–363

    Google Scholar 

  92. Krekeler F (1923) Die Struktur der Sklera in den verschieden Lebensaltern. Arch Augenheilk 93:144–159

    Google Scholar 

  93. Lam A, Douthwaite WA (2000) The ageing effect on the central posterior corneal radius. Ophthalmic Physiol Opt 20:63–69

    Google Scholar 

  94. Lari DR, Schultz DS, Wang AS, Lee OT, Stewart JM (2012) Scleral mechanics: comparing whole globe inflation and uniaxial testing. Exp Eye Res 94:128–135

    Google Scholar 

  95. Lee RE, Davison PF (1981) Collagen composition and turnover in ocular tissues of the rabbit. Exp Eye Res 32:737–745

    Google Scholar 

  96. Lee PP, Walt JW, Rosenblatt LC, Siegartel LR, Stern LS (2007) Association between intraocular pressure variation and glaucoma progression: data from a United States chart review. Am J Ophthalmol 144(901–907):e1

    Google Scholar 

  97. Lee RE, Davison PF (1984) The collagens of the developing bovine cornea. Exp Eye Res 39:639–652

    Google Scholar 

  98. Liu JHK, Kripke DF, Hoffman RE, Twa MD, Loving RT, Rex KM, Gupta N, Weinreb RN (1998) Nocturnal elevation of intraocular pressure in young adults. Invest Ophthalmol Vis Sci 39:2707–2712

    Google Scholar 

  99. Liu JHK, Kripke DF, Twa MD, Hoffman RE, Mansberger SL, Rex KM, Girkin CA, Weinreb RN (1999) Twenty-four-hour pattern of intraocular pressure in the aging population. Invest Ophthalmol Vis Sci 40:2912–2917

    Google Scholar 

  100. Liu J, Roberts CJ (2005) Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg 31:146–155

    Google Scholar 

  101. Luce DA (2005) Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 31:156–162

    Google Scholar 

  102. Malik NS, Moss SJ, Ahmed N, Furth AJ, Wall RS, Meek KM (1992) Ageing of the human corneal stroma: structural and biochemical changes. Biochim Biophys Acta 1138:222–228

    Google Scholar 

  103. Manapuram RK, Aglyamov SR, Monediado FM, Mashiatulla M, Li J, Emelianov SY, Larina KV (2012) In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography. J Biomed Opt 17:100501-1

    Google Scholar 

  104. Manschot WA (1978) Senile scleral plaques and senile scleromalacia. Br J Ophthalmol 62:376–380

    Google Scholar 

  105. Marcos S, Kling S, Bekesi N, Dorronsoro C (2014) Corneal biomechanical properties from air-puff corneal deformation imaging

    Google Scholar 

  106. McBrien NA, Cornell LM, Gentle A (2001) Structural and ultrastructural changes to the sclera in a mammalian model of high myopia. Invest Ophthalmol Vis Sci 42:2179–2187

    Google Scholar 

  107. McBrien NA, Gentle A (2003) Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res 22:307–338

    Google Scholar 

  108. Meek KM, Boote C (2004) The organization of collagen in the corneal stroma. Exp Eye Res 78:503–512

    Google Scholar 

  109. Meek KM, Fullwood NJ (2001) Corneal and scleral collagens—a microscopist’s perspective. Micron 32:261–272

    Google Scholar 

  110. Meek KM (2008) The cornea and sclera

    Google Scholar 

  111. Muller LJ, Pels E, Schurmans LR, Vrensen GF (2004) A new three-dimensional model of the organization of proteoglycans and collagen fibrils in the human corneal stroma. Exp Eye Res 78:493–501

    Google Scholar 

  112. Myers KM, Cone FE, Quigley HA, Gelman S, Pease ME, Nguyen TD (2010) The in vitro inflation response of mouse sclera. Exp Eye Res 91:866–875

    Google Scholar 

  113. Myers KM, Coudrillier B, Boyce BL, Nguyen TD (2010) The inflation response of the posterior bovine sclera. Acta Biomater 6:4327–4335

    Google Scholar 

  114. Nahas A, Bauer M, Roux S, Boccara AC (2013) 3D static elastography at the micrometer scale using full field OCT. Biomed Opt Exp 4:2138–2149

    Google Scholar 

  115. Nash IS, Greene PR, Foster CS (1982) Comparison of mechanical properties of keratoconus and normal corneas. Exp Eye Res 35:413–424

    Google Scholar 

  116. Nguyen TM, Aubry JF, Touboul D, Bercoff J (2011) & TANTER, M. In vivo evidence of cornea elastic anisotropy, Assessment of shear anisotropy using supersonic shear imaging with rotating arrays, pp 1278–1280

    Google Scholar 

  117. Nguyen TM, Aubry JF, Touboul D, Fink M, Gennisson JL, Bercoff J, Tanter M (2012) Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: A pilot study. Invest Ophthalmol Vis Sci 53:5948–5954

    Google Scholar 

  118. Norman RE, Flanagan JG, Rausch SMK, Sigal IA, Tertinegg I, Eilaghi A, Portnoy S, Sled JG, Ethier CR (2010) Dimensions of the human sclera: Thickness measurement and regional changes with axial length. Exp Eye Res 90:277–284

    Google Scholar 

  119. Nyquist GW (1968) Rheology of the cornea: experimental techniques and results. Exp Eye Res 7:183–184, IN1–IN2, 185–188

    Google Scholar 

  120. Olsen T (1986) On the calculation of power from curvature of the cornea. Br J Ophthalmol 70:152–154

    Google Scholar 

  121. Olsen TW, Aaberg SY, Geroski DH, Edelhauser HF (1998) Human sclera: thickness and surface area. Am J Ophthalmol 125:237–241

    Google Scholar 

  122. Olsen TW, Sanderson S, Feng X, Hubbard WC (2002) Porcine sclera: thickness and surface area. Invest Ophthalmol Vis Sci 43:2529–2532

    Google Scholar 

  123. Orssengo GJ, Pye DC (1999) Determination of the true intraocular pressure and modulus of elasticity of the human cornea in vivo. Bull Math Biol 61:551–572

    Google Scholar 

  124. Palko JR, Pan X, Liu J (2011) Dynamic testing of regional viscoelastic behavior of canine sclera. Exp Eye Res 93:825–832

    Google Scholar 

  125. Parry DA, Craig AS (1979) Electron microscope evidence for an 80 a unit in collagen fibrils. Nature 282:213–215

    Google Scholar 

  126. Phillips JR, McBrien NA (2004) Pressure-induced changes in axial eye length of chick and tree shrew: significance of myofibroblasts in the sclera. Invest Ophthalmol Vis Sci 45:758–763

    Google Scholar 

  127. Pierscionek BK, Asejczyk-Widlicka M, Schachar RA (2007) The effect of changing intraocular pressure on the corneal and scleral curvatures in the fresh porcine eye. Br J Ophthalmol 91:801–803

    Google Scholar 

  128. Pinsky PM, van der Heide D, Chernyak D (2005) Computational modeling of mechanical anisotropy in the cornea and sclera. J Cataract Refract Surg 31:136–145

    Google Scholar 

  129. Quigley HA, Dorman-Pease ME, Brown AE (1991) Quantitative study of collagen and elastin of the optic nerve head and sclera in human and experimental monkey glaucoma. Curr Eye Res 10:877–888

    Google Scholar 

  130. Rada JA, Achen VR, Penugonda S, Schmidt RW, Mount BA (2000) Proteoglycan composition in the human sclera during growth and aging. Invest Ophthalmol Vis Sci 41:1639–1648

    Google Scholar 

  131. Rada JA, Shelton S, Norton TT (2006) The sclera and myopia. Exp Eye Res 82:185–200

    Google Scholar 

  132. Rucklidge GJ, Milne G, McGaw BA, Milne E, Robins SP (1992) Turnover rates of different collagen types measured by isotope ratio mass-spectrometry. Biochim Biophys Acta 1156:57–61

    Google Scholar 

  133. Scott JE, Orford CR, Hughes EW (1981) Proteoglycan-collagen arrangements in developing rat tail tendon. An electron microscopical and biochemical investigation. Biochem J 195:573–581

    Google Scholar 

  134. Sheppard J, Hayes S, Boote C, Votruba M, Meek KM (2010) Changes in corneal collagen architecture during mouse postnatal development. Invest Ophthalmol Vis Sci 51:2936–2942

    Google Scholar 

  135. Shimmyo M, Orloff PN (2005) Corneal thickness and axial length. Am J Ophthalmol 139:553–554

    Google Scholar 

  136. Shin TJ, Vito RP, Johnson LW, McCarey BE (1997) The distribution of strain in the human cornea. J Biomech 30:497–503

    Google Scholar 

  137. Sigal IA, Flanagan JG, Ethier CR (2005) Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 46:4189–4199

    Google Scholar 

  138. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2004) Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci 45:4378–4387

    Google Scholar 

  139. Sjontorf E, Edmund C (1987) In vivo determination of Young’s modulus for the human cornea. Bull Math Biol 49:217–232

    Google Scholar 

  140. Smolek M (1988) Elasticity of the bovine sclera measured with real-time holographic interferometry. Am J Optom Physiol Opt 65:653–660

    Google Scholar 

  141. Sorsby A, Wilcox K, Ham D (1935) The calcium content of the sclerotic and its variation with age. Br J Ophthalmol 19:327–337

    Google Scholar 

  142. Swarbrick HA (2006) Orthokeratology review and update. Clin Exp Optom 89:124–143

    Google Scholar 

  143. Tanaka S, Avigad G, Brodsky B, Eikenberry EF (1988) Glycation induces expansion of the molecular packing of collagen. J Mol Biol 203:495–505

    Google Scholar 

  144. Tanter M, Touboul D, Gennisson JL, Bercoff J, Fink M (2009) High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging. IEEE Trans Med Imaging 28:1881–1893

    Google Scholar 

  145. Uchio E, Ohno S, Kudoh J, Aoki K, Kisielewicz LT (1999) Simulation model of an eyeball based on finite element analysis on a supercomputer. Br J Ophthalmol 83:1106–1111

    Google Scholar 

  146. Vannas S, Teir H (1960) Observations on structures and age changes in the human sclera. Acta Ophthlmol (Kbh) 38:268–279

    Google Scholar 

  147. Vurgese S, Panda-Jonas S, Jonas JB (2012) Scleral thickness in human eyes. PLoS ONE 7:e29692

    Google Scholar 

  148. Wang S, Larin KV (2014) Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics. Opt Lett 39:41–44

    Google Scholar 

  149. Watson PG, Young RD (2004) Scleral structure, organisation and disease. Rev Exp Eye Res 78:609–623

    Google Scholar 

  150. Weale RA (1963) The aging eye. Harper & Row, London

    Google Scholar 

  151. Wollensak G, Iomdina E (2008) Crosslinking of scleral collagen in the rabbit using glyceraldehyde. J Cataract Refract Surg 34:651–656

    Google Scholar 

  152. Wollensak G, Iomdina E, Dittert DD, Salamatina O, Stoltenburg G (2005) Cross-linking of scleral collagen in the rabbit using riboflavin and UVA. Acta Ophthalmol Scand 83:477–482

    Google Scholar 

  153. Wollensak G, Spoerl E, Seiler T (2003) Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg 29:1780–1785

    Google Scholar 

  154. Woo SLY, Kobayashi AS, Schlegel WA, Lawrence C (1972) Nonlinear material properties of intact cornea and sclera. Exp Eye Res 14:29–39

    Google Scholar 

  155. Yan D, Mcpheeters S, Johnson G, Utzinger U, Vande Geest JP (2011) Microstructural differences in the human posterior sclera as a function of age and race. Invest Ophthalmol Vis Sci 52:821–829

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Elsheikh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Geraghty, B., Whitford, C., Boote, C., Akhtar, R., Elsheikh, A. (2015). Age-Related Variation in the Biomechanical and Structural Properties of the Corneo-Scleral Tunic. In: Derby, B., Akhtar, R. (eds) Mechanical Properties of Aging Soft Tissues. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-03970-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03970-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03969-5

  • Online ISBN: 978-3-319-03970-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics