Skip to main content

Therapeutic potential of computer to cerebral cortex implantable devices

  • Chapter
Operative Neuromodulation

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 97/2))

Abstract

In this article, an overview of some of the latest developments in the field of cerebral cortex to computer interfacing (CCCI) is given. This is posed in the more general context of Brain-Computer Interfaces in order to assess advantages and disadvantages. The emphasis is clearly placed on practical studies that have been undertaken and reported on, as opposed to those speculated, simulated or proposed as future projects. Related areas are discussed briefly only in the context of their contribution to the studies being undertaken. The area of focus is notably the use of invasive implant technology, where a connection is made directly with the cerebral cortex and/or nervous system. Tests and experimentation which do not involve human subjects are invariably carried out a priori to indicate the eventual possibilities before human subjects are themselves involved. Some of the more pertinent animal studies from this area are discussed. The paper goes on to describe human experimentation, in which neural implants have linked the human nervous system bidirectionally with technology and the internet. A view is taken as to the prospects for the future for CCCI, in terms of its broad therapeutic role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Branner A, Normann R (2000) A multielectrode array for intrafascicular recording and stimulation in the sciatic nerve of a cat. Brain Res Bull 51: 293–306

    Article  PubMed  CAS  Google Scholar 

  2. Chapin JK (2004) Using multi-neuron population recordings for neural prosthetics. Nat Neurosci 7: 452–454

    Article  PubMed  CAS  Google Scholar 

  3. Carmena J, Lebedev M, Crist R, O’Doherty J, Santucci D, Dimitrov D, Patil P, Henriquez C, Nicolelis M (2003) Learning to control a brain-machine interface for reaching and grasping by primates. Plos Biol 1: E2

    Article  Google Scholar 

  4. Dobelle W (2000) Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J 46: 3–9

    Article  PubMed  CAS  Google Scholar 

  5. Donoghue J (2002) Connecting cortex to machines: recent advances in brain interfaces, Nat Neurosci Suppl 5: 1085–1088

    Article  CAS  Google Scholar 

  6. Donoghue J, Nurmikko A, Friehs G, Black M (2004) Development of a neuromotor prosthesis for humans. Chapter 63 in advances in clinical neurophysiology. Clin Neurophysiol Suppl 57: 588–602

    Google Scholar 

  7. Finn W, LoPresti P (eds) (2003) Handbook of Neuroprosthetic methods. CRC Press

    Google Scholar 

  8. Friehs G, Zerris V, Ojakangas C, Fellows M, Donoghue J (2004) Brain-machine and brain-computer interfaces. Stroke 35: 2702–2705

    Article  PubMed  Google Scholar 

  9. Gasson M, Hutt B, Goodhew I, Kyberd P, Warwick K (2005) Invasive neural prosthesis for neural signal detection and nerve stimulation. Proc Inter J Adapt Contr Sign Proc 19: 365–375

    Google Scholar 

  10. Gasson M, Yung S, Aziz T, Stein J, Warwick K (2005) Towards a demand driven deep brain stimulator for the treatment of movement disorders. Proc. 3rd IEE International Seminar on Medical Applications of Signal Processing, pp 16/1–16/4

    Google Scholar 

  11. Grill W, Kirsch R (2000) Neuroprosthetic applications of electrical stimulation. Assis Techn 12: 6–16

    CAS  Google Scholar 

  12. Hinterberger T, Veit R, Wilhelm B, Weiscopf N, Vatine J, Birbaumer N (2005) Neuronal mechanisms underlying control of a brain-computer interface. Eur J Neurosci 21: 3169–3181

    Article  PubMed  Google Scholar 

  13. Kennedy P, Bakay R, Moore M, Adams K, Goldwaith J (2000) Direct control of a computer from the human central nervous system. IEEE Trans Rehab Eng 8: 198–202

    Article  CAS  Google Scholar 

  14. Kennedy P, Andreasen D, Ehirim P, King B, Kirby T, Mao H, Moore M (2004) Using human extra-cortical local field potentials to control a switch. J Neur Eng 1: 72–77

    Article  Google Scholar 

  15. Mann S (1997) Wearable computing: a first step towards personal imaging. Computer 30: 25–32

    Article  Google Scholar 

  16. Nicolelis M, Dimitrov D, Carmena J, Crist R, Lehew G, Kralik J, Wise S (2003) Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Nat Acad USA 100: 11041–11046

    Article  CAS  Google Scholar 

  17. Penny W, Roberts S, Curran E, Stokes M (2000) EEG-based communication: a pattern recognition approach. IEEE Trans Rehab Eng 8: 214–215

    Article  CAS  Google Scholar 

  18. Pinter M, Murg M, Alesch F, Freundl B, Helscher R, Binder H (1999) Does deep brain stimulation of the nucleus ventralis intermedius affect postural control and locomotion in Parkinson’s disease? Mov Disord 14: 958–963

    Article  PubMed  CAS  Google Scholar 

  19. Reger B, Fleming K, Sanguineti V, Simon Alford S, Mussa-Ivaldi F (2000) Connecting brains to robots: an artificial body for studying computational properties of neural tissues. Artif Life 6: 307–324

    Article  PubMed  CAS  Google Scholar 

  20. Rizzo J, Wyatt J, Humayun M, DeJuan E, Liu W, Chow A, Eckmiller R, Zrenner E, Yagi T, Abrams G (2001) Retinal prosthesis: an encouraging first decade with major challenges ahead. Opthalmology 108, No 1

    Google Scholar 

  21. Roitberg B (2005) Noninvasive brain-computer interface. Surg Neurol 63: 195

    Article  Google Scholar 

  22. Warwick K (2004) I Cyborg, University of Illinois Press

    Google Scholar 

  23. Warwick K, Gasson M, Hutt B, Goodhew I, Kyberd P, Andrews B, Teddy P, Shad A (2003) The application of implant technology for cybernetic systems. Arch Neurol 60: 1369–1373

    Article  PubMed  Google Scholar 

  24. Warwick K, Gasson M, Hutt B, Goodhew I, Kyberd P, Schulzrinne H, Wu X (2004) Thought communication and control: a first step using radiotelegraphy. IEE Proc Commun 151: 185–189

    Article  Google Scholar 

  25. Warwick K, Gasson M, Hutt B, Goodhew I (2005) An attempt to extend human sensory capabilities by means of implant technology. Proc. IEEE Int. Conference on Systems, Man and Cybernetics, Hawaii, pp 1663–1668

    Google Scholar 

  26. Wolpaw J, McFarland D, Neat G, Forheris C (1990) An EEG based brain-computer interface for cursor control. Electroencephalogr Clin Neurophysiol 78: 252–259

    Google Scholar 

  27. Xie S, Yang Z, Yang Y (2004) Brain-computer interface based on event-related potentials during imitated natural reading, Inter J Psychol Suppl 39: S138

    Google Scholar 

  28. Yoo S, Fairneny T, Chen N, Choo S, Panych L, Park H, Lee S, Jolesz F (2004) Brain-computer interface using fMRI: spatial navigation by thoughts. Neuroreport 15: 1591–1595

    Article  PubMed  Google Scholar 

  29. Yu N, Chen J, Ju M (2001) Closed-loop control of quadriceps/hamstring activation for FES-induced standing-up movement of paraplegics. J Musculoskel Res 5: 173–184

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Warwick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this chapter

Cite this chapter

Warwick, K., Gasson, M.N., Spiers, A.J. (2007). Therapeutic potential of computer to cerebral cortex implantable devices. In: Sakas, D.E., Simpson, B.A. (eds) Operative Neuromodulation. Acta Neurochirurgica Supplements, vol 97/2. Springer, Vienna. https://doi.org/10.1007/978-3-211-33081-4_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33081-4_61

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33080-7

  • Online ISBN: 978-3-211-33081-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics