Skip to main content

Unsharp Values, Domains and Topoi

  • Chapter
  • First Online:
Quantum Field Theory and Gravity

Abstract

The so-called topos approach provides a radical reformulation of quantum theory. Structurally, quantum theory in the topos formulation is very similar to classical physics. There is a state object \(\underline\sum\), analogous to the state space of a classical system, and a quantity-value object \(\underline{\mathbb{R}^{\leftrightarrow}}\), generalising the real numbers. Physical quantities are maps from the state object to the quantity-value object – hence the ‘values’ of physical quantities are not just real numbers in this formalism. Rather, they are families of real intervals, interpreted as ‘unsharp values’. We will motivate and explain these aspects of the topos approach and show that the structure of the quantity-value object \(\underline{\mathbb{R}^{\leftrightarrow}}\) can be analysed using tools from domain theory, a branch of order theory that originated in theoretical computer science. Moreover, the base category of the topos associated with a quantum system turns out to be a domain if the underlying von Neumann algebra is a matrix algebra. For general algebras, the base category still is a highly structured poset. This gives a connection between the topos approach, noncommutative operator algebras and domain theory. In an outlook, we present some early ideas on how domains may become useful in the search for new models of (quantum) space and space-time.

Mathematics Subject Classification (2010). Primary 81P99; Secondary 06A11, 18B25, 46L10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abramsky, A. Jung. Domain Theory. In Handbook of Logic in Computer Science, eds. S. Abramsky, D.M. Gabbay, T.S.E. Maibaum, Clarendon Press, 1–168 (1994).

    Google Scholar 

  2. M. Caspers, C. Heunen, N.P. Landsman, B. Spitters. Intuitionistic quantum logic of an n-level system. Found. Phys. 39, 731–759 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Coecke, K. Martin. A partial order on classical and quantum states. In New Structures for Physics, ed. B. Coecke, Springer, Heidelberg (2011).

    Google Scholar 

  4. A. Döring. Kochen-Specker theorem for von Neumann algebras. Int. Jour. Theor. Phys. 44, 139–160 (2005).

    Google Scholar 

  5. A. Döring. Topos theory and ‘neo-realist’ quantum theory. In Quantum Field Theory, Competitive Models, eds. B. Fauser, J. Tolksdorf, E. Zeidler, Birkh¨auser (2009).

    Google Scholar 

  6. A. Döring. Quantum states and measures on the spectral presheaf. Adv. Sci. Lett. 2, special issue on “Quantum Gravity, Cosmology and Black Holes”, ed. M. Bojowald, 291–301 (2009).

    Google Scholar 

  7. A. Döring. Topos quantum logic and mixed states. In Proceedings of the 6th International Workshop on Quantum Physics and Logic (QPL 2009), Oxford, eds. B. Coecke, P. Panangaden, and P. Selinger. Electronic Notes in Theoretical Computer Science 270(2) (2011).

    Google Scholar 

  8. A. Döring. The physical interpretation of daseinisation. In Deep Beauty, ed. Hans Halvorson, 207–238, Cambridge University Press, New York (2011).

    Google Scholar 

  9. A. Döring, and C.J. Isham. A topos foundation for theories of physics: I. Formal languages for physics. J. Math. Phys 49, 053515 (2008).

    Google Scholar 

  10. A. Döring, and C.J. Isham. A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory. J. Math. Phys 49, 053516 (2008).

    Google Scholar 

  11. A. Döring, and C.J. Isham. A topos foundation for theories of physics: III. Quantum theory and the representation of physical quantities with arrows \(\breve{A}:\underline{\Sigma}\rightarrow\textit{P}\mathbb{R}\). J. Math. Phys 49, 053517 (2008).

    Google Scholar 

  12. A. Döring, and C.J. Isham. A topos foundation for theories of physics: IV. Categories of systems. J. Math. Phys 49, 053518 (2008).

    Google Scholar 

  13. A. Döring, and C.J. Isham. ‘What is a thing?’: topos theory in the foundations of physics. In New Structures for Physics, ed. B. Coecke, Springer (2011).

    Google Scholar 

  14. T. Erker, M. H. Escard´o and K. Keimel. The way-below relation of function spaces over semantic domains. Topology and its Applications 89, 61–74 (1998).

    Google Scholar 

  15. C. Flori. A topos formulation of consistent histories. Jour. Math. Phys 51 053527 (2009).

    Article  MathSciNet  Google Scholar 

  16. G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove, D.S. Scott. Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applications 93, Cambridge University Press (2003).

    Google Scholar 

  17. C. Heunen, N.P. Landsman, B. Spitters. A topos for algebraic quantum theory. Comm. Math. Phys. 291, 63–110 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Heunen, N.P. Landsman, B. Spitters. The Bohrification of operator algebras and quantum logic. Synthese, in press (2011).

    Google Scholar 

  19. C. Heunen, N.P. Landsman, B. Spitters. Bohrification. In Deep Beauty, ed. H. Halvorson, 271–313, Cambridge University Press, New York (2011).

    Google Scholar 

  20. C.J. Isham. Topos methods in the foundations of physics. In Deep Beauty, ed. Hans Halvorson, 187–205, Cambridge University Press, New York (2011).

    Google Scholar 

  21. C.J. Isham. Topos theory and consistent histories: The internal logic of the set of all consistent sets. Int. J. Theor. Phys., 36, 785–814 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  22. C.J. Isham and J. Butterfield. A topos perspective on the Kochen-Specker theorem: I. Quantum states as generalised valuations. Int. J. Theor. Phys. 37, 2669–2733 (1998).

    MathSciNet  MATH  Google Scholar 

  23. C.J. Isham and J. Butterfield. A topos perspective on the Kochen-Specker theorem: II. Conceptual aspects, and classical analogues. Int. J. Theor. Phys. 38, 827–859 (1999).

    Google Scholar 

  24. C.J. Isham, J. Hamilton and J. Butterfield. A topos perspective on the Kochen-Specker theorem: III. Von Neumann algebras as the base category. Int. J. Theor. Phys. 39, 1413-1436 (2000).

    MathSciNet  MATH  Google Scholar 

  25. C.J. Isham and J. Butterfield. Some possible roles for topos theory in quantum theory and quantum gravity. Found. Phys. 30, 1707–1735 (2000).

    Article  MathSciNet  Google Scholar 

  26. C.J. Isham and J. Butterfield. A topos perspective on the Kochen-Specker theorem: IV. Interval valuations. Int. J. Theor. Phys 41, 613–639 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  27. K. Martin, P. Panangaden. A domain of spacetime intervals in general relativity. Commun. Math. Phys. 267, 563-586 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  28. D.S. Scott. Outline of a mathematical theory of computation. In Proceedings of 4th Annual Princeton Conference on Information Sciences and Systems, 169–176 (1970).

    Google Scholar 

  29. D.S. Scott. Continuous lattices. In Toposes, Algebraic Geometry and Logic, Lecture Notes in Mathematics 274, Springer, 93–136 (1972).

    Google Scholar 

  30. D.S. Scott. Formal semantics of programming languages. In Lattice theory, data types and semantics, Englewood Cliffs, Prentice-Hall, 66–106 (1972).

    Google Scholar 

  31. S. Willard. General Topology. Addison-Wesley Series in Mathematics, Addison Wesley (1970).

    Google Scholar 

  32. L. Ying-Ming, L. Ji-Hua. Solutions to two problems of J.D. Lawson and M. Mislove. Topology and its Applications 69, 153–164 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Döring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Döring, A., Barbosa, R.S. (2012). Unsharp Values, Domains and Topoi. In: Finster, F., Müller, O., Nardmann, M., Tolksdorf, J., Zeidler, E. (eds) Quantum Field Theory and Gravity. Springer, Basel. https://doi.org/10.1007/978-3-0348-0043-3_5

Download citation

Publish with us

Policies and ethics