Skip to main content

Generalized Solutions and Spectrum for Dirichlet Forms on Graphs

  • Conference paper
  • First Online:
Random Walks, Boundaries and Spectra

Part of the book series: Progress in Probability ((PRPR,volume 64))

Abstract

In the framework of regular Dirichlet forms we consider operators on infinite graphs. We study the connection of the existence of solutions with certain properties and the spectrum of the operators. In particular we prove a version of the Allegretto-Piepenbrink theorem which says that positive (super)-solutions to a generalized eigenvalue equation exist exactly for energies not exceeding the infimum of the spectrum. Moreover we show a version of Shnol’s theorem, which says that existence of solutions satisfying a growth condition with respect to a given boundary measure implies that the corresponding energy is in the spectrum.

Mathematics Subject Classification (2000). Primary 47B39; Secondary 35P05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Allegretto. On the equivalence of two types of oscillation for elliptic operators. Pac. J. Math. 55, 319–328, 1974.

    MathSciNet  MATH  Google Scholar 

  2. A. Boutet de Monvel, D. Lenz and P. Stollmann, Shnol’s theorem for strongly local Dirichlet forms. Israel J. Math. 173, 189–211, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  3. S.Y. Cheng, S.T. Yau, Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math. 28(3), 1975, 333–354.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Dodziuk, Difference equations, isoperimetric inequalities and transience of certain random walks, Trans. Am. Math. Soc. 284, 787–794, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Dodziuk, Elliptic operators on infinite graphs, Analysis, Geometry and Topology of Elliptic Operators: Papers in Honor of Krzysztof P. Wojciechowski, World Scientific Pub Co, 353–368 2006.

    Google Scholar 

  6. J. Dodziuk, L. Karp, Spectral and function theory for combinatorial Laplacians, Geometry of Random Motion, (R. Durrett, M.A. Pinsky ed.) AMS Contemporary Mathematics, Vol 73, 25–40, 1988.

    Google Scholar 

  7. J. Dodziuk, V. Mathai, Kato’s inequality and asymptotic spectral properties for discrete magnetic Laplacians. The ubiquitous heat kernel. Contemp. Math., 398, 69–81, Amer. Math. Soc., Providence, RI, 2006.

    Google Scholar 

  8. D. Fischer-Colbrie, R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature. Comm. Pure Appl. Math. 33(2), 199– 211, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  9. R.L. Frank, R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255(12), 3407–3430, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Fukushima, Y. O-shima, M. Takeda, Dirichlet forms and symmetric Markov processes. de Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin, 1994. x+392 pp. ISBN: 3-11-011626-X

    Google Scholar 

  11. R.L. Frank, B. Simon, T. Weidl, Eigenvalue bounds for perturbations of Schr¨odinger operators and Jacobi matrices with regular ground states. Comm. Math. Phys. 282(1), 199–208, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Keller, D. Lenz, Dirichlet forms and stochastic completeness of graphs and subgraphs, preprint (2009), arXiv:0904.2985, to appear in: J. Reine Angew. Math.

    Google Scholar 

  13. M. Keller, D. Lenz, Unbounded Laplacians on graphs: Basic spectral properties and the heat quation, Math. Model. Nat. Phenom. 5, no. 4, 198–224, 2010.

    Google Scholar 

  14. P. Kuchment, Quantum graphs II. Some spectral properties of quantum and combinatorialgraphs. J. Phys. A, 38(22), 4887–4900, 2005.

    MathSciNet  MATH  Google Scholar 

  15. T. Kumagai, Heat kernel estimates and parabolic Harnack inequalities on graphs and resistance forms. Publ. Res. Inst. Math. Sci. 40(3), 793–818, 2004

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Lenz, P. Stollmann, I. Veseli´c, The Allegretto-Piepenbrink theorem for strongly local Dirichlet forms. Doc. Math. 14, 167–189, 2009.

    Google Scholar 

  17. D. Lenz, P. Stollmann, I. Veseli´c, Generalized eigenfunctions and spectral theory for strongly local Dirichlet forms. To appear in: OTAMP 2008 proceedings. (arXiv: 0909.1107)

    Google Scholar 

  18. W.F. Moss, J. Piepenbrink, Positive solutions of elliptic equations. Pacific J. Math. 75(1), 219–226, 1978.

    MathSciNet  MATH  Google Scholar 

  19. B. Mohar, W. Woess, A survey on spectra of infinite graphs. Bull. London Math. Soc. 21(3), 209–234, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Piepenbrink, Nonoscillatory elliptic equations. J. Differential Equations, 15, 541– 550, 1974.

    MathSciNet  MATH  Google Scholar 

  21. W.E. Pruitt, Eigenvalues of non-negative matrices. Ann. Math. Statist. 35, 1797– 1800, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Reed, B. Simon, Methods of modern mathematical physics. IV. Analysis of operators. Academic Press, New York-London, 1978. xv+396 pp. ISBN: 0-12-585004-2

    Google Scholar 

  23. B. Simon, Spectrum and continuum eigenfunctions of Schr¨odinger operators. J. Funct. Anal., 42, 347–355, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Simon, Schr¨odinger semigroups. Bull. Amer. Math. Soc., 7(3), 447–526, 1982. [25] I.E. Shnol’, On the behaviour of the eigenfunctions of Schr¨odinger’s equation. Mat. Sb., 42, 273–286, 1957. erratum 46(88), 259, 1957.

    Google Scholar 

  25. P. Stollmann, Caught by disorder: A Course on Bound States in Random Media, volume 20 of Progress in Mathematical Physics. Birkh¨auser 2001.

    Google Scholar 

  26. D. Sullivan, Related aspects of positivity in Riemannian geometry. J. Differential Geom. 25(3), 327–351, 1987.

    MathSciNet  MATH  Google Scholar 

  27. D. Vere-Jones, Ergodic properties of nonnegative matrices. I. Pacific J. Math. 22, 361–386, 1967.

    MathSciNet  MATH  Google Scholar 

  28. D. Vere-Jones, Ergodic properties of nonnegative matrices. II. Pacific J. Math. 26, 601–620, 1968.

    MathSciNet  MATH  Google Scholar 

  29. W. Woess, Random walks on infinite graphs and groups. Cambridge Tracts in Mathematics, 138. Cambridge University Press, Cambridge, 2000. xii+334 pp. ISBN: 0- 521-55292-3

    Google Scholar 

  30. R.K. Wojciechowski, Heat kernel and essential spectrum of infinite graphs. Indiana Univ. Math. J. 58, 1419–1441, 2009.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Haeseler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this paper

Cite this paper

Haeseler, S., Keller, M. (2011). Generalized Solutions and Spectrum for Dirichlet Forms on Graphs. In: Lenz, D., Sobieczky, F., Woess, W. (eds) Random Walks, Boundaries and Spectra. Progress in Probability, vol 64. Springer, Basel. https://doi.org/10.1007/978-3-0346-0244-0_10

Download citation

Publish with us

Policies and ethics