Skip to main content

Relationship of Oxidative Stress with Cardiovascular Disease

  • Chapter
  • First Online:
Studies on Women's Health
  • 1102 Accesses

Abstract

More women die from complications related to cardiovascular disease (CVD) each year than men, yet dysfunction of the heart and blood vessels is still often considered to be primarily a “male” health issue. Emerging data indicate that oxidative stress is an important etiological factor for CVD in women, and it is apparent that female hormones, like estrogen, exert powerful influences on oxidative balance. This chapter will present recent findings and current concepts concerning oxidative stress and cardiovascular function in women. Prominent sources of oxidants in the heart and vasculature will be discussed (e.g., NADPH oxidase, xanthine oxidase (XO) , mitochondria, and uncoupled NOS), as well as the effect of estrogen on activity and expression of these proteins in the context of normal hormonal levels and exogenous estrogen replacement therapy. We will also discuss three prominent CVDs that exhibit a rather marked—and at times, surprising—sexual dimorphism in their epidemiology, and consider the ability of estrogen to influence the development and progression of these pathophysiological states in terms of cellular/molecular mechanisms. The overall goal of the chapter is to provide the reader with a rather comprehensive overview of how oxidative stress impacts women’s cardiovascular health, and to review the potential role of estrogen as both a preventive and causative factor in CVD among women.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger VL, Go AS, Lloyd-Jones DM et al (2011) Heart disease and stroke statistics–2011 update: a report from the american heart association. Circulation 123(4):e18–e209

    PubMed  Google Scholar 

  2. Research SfWsH (2005) What Diseases Do Women Fear Most?: International Communications Research

    Google Scholar 

  3. Mosca L, Linfante AH, Benjamin EJ et al (2005) National study of physician awareness and adherence to cardiovascular disease prevention guidelines. Circulation 111(4):499–510

    PubMed  Google Scholar 

  4. Sweitzer NK, Douglas PS (2005) Cardiovascular disease in women. In: Zipes DP, Libby P, Bonow RO, Braunwald E (eds) Heart disease: a textbook of cardiovascular medicine. Elsevier Saunders, Philadelphia, pp 1951–1964

    Google Scholar 

  5. Barrett-Connor E (1997) Sex differences in coronary heart disease. why are women so superior? The 1995 ancel keys lecture. Circulation 95(1):252–264

    PubMed  CAS  Google Scholar 

  6. Vitale C, Mendelsohn ME, Rosano GM (2009) Gender differences in the cardiovascular effect of sex hormones. Nat Rev Cardiol 6(8):532–542

    PubMed  CAS  Google Scholar 

  7. Mendelsohn ME, Karas RH (1999) The protective effects of estrogen on the cardiovascular system. N Engl J Med 340(23):1801–1811

    PubMed  CAS  Google Scholar 

  8. White RE (2002) Estrogen and vascular function. Vascul Pharmacol 38:73–80

    PubMed  CAS  Google Scholar 

  9. White RE, Gerrity R, Barman SA, Han G (2010) Estrogen and oxidative stress: a novel mechanism that may increase the risk for cardiovascular disease in women. Steroids 75(11):788–793

    PubMed  CAS  Google Scholar 

  10. Lenfant F, Tremollieres F, Gourdy P, Arnal JF (2011) Timing of the vascular actions of estrogens in experimental and human studies: why protective early, and not when delayed? Maturitas 68(2):165–173

    PubMed  CAS  Google Scholar 

  11. Rossouw JE, Anderson GL, Prentice RL et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women's health initiative randomized controlled trial. JAMA 288(3):321–333

    PubMed  CAS  Google Scholar 

  12. Manson JE, Allison MA, Rossouw JE et al (2007) Estrogen therapy and coronary-artery calcification. N Engl J Med 356(25):2591–2602

    PubMed  CAS  Google Scholar 

  13. Baker L, Meldrum KK, Wang M et al (2003) The role of estrogen in cardiovascular disease. J Surg Res 115(2):325–344

    PubMed  CAS  Google Scholar 

  14. Rossouw JE (2002) Hormones, genetic factors, and gender differences in cardiovascular disease. Cardiovasc Res 53(3):550–557

    PubMed  CAS  Google Scholar 

  15. Agrawal A, Lourenco EV, Gupta S, La Cava A (2008) Gender-based differences in leptinemia in healthy aging, non-obese individuals associate with increased marker of oxidative stress. Int J Clin Exp Med 1(4):305–309

    PubMed  CAS  Google Scholar 

  16. Vassalle C, Mercuri A, Maffei S (2009) Oxidative status and cardiovascular risk in women: keeping pink at heart. World J Cardiol 1(1):26–30

    PubMed  Google Scholar 

  17. Fearon IM, Faux SP (2009) Oxidative stress and cardiovascular disease: novel tools give (free) radical insight. J Mol Cell Cardiol 47(3):372–381

    PubMed  CAS  Google Scholar 

  18. Unfer TC, Conterato GM, da Silva JC, Duarte MM, Emanuelli T (2006) Influence of hormone replacement therapy on blood antioxidant enzymes in menopausal women. Clin Chim Acta 369(1):73–77

    PubMed  CAS  Google Scholar 

  19. Maffei S, Mercuri A, Prontera C, Zucchelli GC, Vassalle C (2006) Vasoactive biomarkers and oxidative stress in healthy recently postmenopausal women treated with hormone replacement therapy. Climacteric 9(6):452–458

    PubMed  CAS  Google Scholar 

  20. Li JM, Wheatcroft S, Fan LM, Kearney MT, Shah AM (2004) Opposing roles of p47phox in basal versus angiotensin II-stimulated alterations in vascular o2- production, vascular tone, and mitogen-activated protein kinase activation. Circulation 109(10):1307–1313

    PubMed  CAS  Google Scholar 

  21. Elahi MM, Kong YX, Matata BM (2009) Oxidative stress as a mediator of cardiovascular disease. Oxid Med Cell Longev 2(5):259–269

    PubMed  Google Scholar 

  22. Manea A, Manea SA, Gafencu AV, Raicu M, Simionescu M (2008) AP-1-dependent transcriptional regulation of NADPH oxidase in human aortic smooth muscle cells: role of p22phox subunit. Arterioscler Thromb Vasc Biol 28(5):878–885

    PubMed  CAS  Google Scholar 

  23. Duerrschmidt N, Stielow C, Muller G, Pagano PJ, Morawietz H (2006) NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells. J Physiol. 576(Pt 2):557–567

    PubMed  CAS  Google Scholar 

  24. George J, Struthers AD (2009) Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag 5(1):265–272

    PubMed  CAS  Google Scholar 

  25. Nees S, Gerbes AL, Gerlach E, Staubesand J (1981) Isolation, identification, and continuous culture of coronary endothelial cells from guinea pig hearts. Eur J Cell Biol 24(2):287–297

    PubMed  CAS  Google Scholar 

  26. Khan SA, Lee K, Minhas KM et al (2004) Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation-contraction coupling. Proc Natl Acad Sci U S A 101(45):15944–15948

    PubMed  CAS  Google Scholar 

  27. Panus PC, Wright SA, Chumley PH, Radi R, Freeman BA (1992) The contribution of vascular endothelial xanthine dehydrogenase/oxidase to oxygen-mediated cell injury. Arch Biochem Biophys 294(2):695–702

    PubMed  CAS  Google Scholar 

  28. Weseler AR, Bast A (2010) Oxidative stress and vascular function: implications for pharmacologic treatments. Curr Hypertens Rep 12(3):154–161

    PubMed  CAS  Google Scholar 

  29. Cappola TP, Kass DA, Nelson GS et al (2001) Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation 104(20):2407–2411

    PubMed  CAS  Google Scholar 

  30. Landmesser U, Spiekermann S, Dikalov S et al (2002) Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation 106(24):3073–3078

    PubMed  CAS  Google Scholar 

  31. Spiekermann S, Landmesser U, Dikalov S et al (2003) Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation 107(10):1383–1389

    PubMed  CAS  Google Scholar 

  32. Jacobson A, Yan C, Gao Q et al (2007) Aging enhances pressure-induced arterial superoxide formation. Am J Physiol Heart Circ Physiol 293(3):H1344–H1350

    PubMed  CAS  Google Scholar 

  33. Davidson SM (2010) Endothelial mitochondria and heart disease. Cardiovasc Res 88(1):58–66

    PubMed  CAS  Google Scholar 

  34. Chang JC, Kou SJ, Lin WT, Liu CS (2010) Regulatory role of mitochondria in oxidative stress and atherosclerosis. World J Cardiol 2(6):150–159

    PubMed  Google Scholar 

  35. Dikalova AE, Bikineyeva AT, Budzyn K et al (2010) Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res 107(1):106–116

    PubMed  CAS  Google Scholar 

  36. Kimura S, Zhang GX, Nishiyama A et al (2005) Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II. Hypertension 45(5):860–866

    PubMed  CAS  Google Scholar 

  37. Krieg T, Cui L, Qin Q, Cohen MV, Downey JM (2004) Mitochondrial ROS generation following acetylcholine-induced EGF receptor transactivation requires metalloproteinase cleavage of proHB-EGF. J Mol Cell Cardiol 36(3):435–443

    PubMed  CAS  Google Scholar 

  38. Herrera B, Alvarez AM, Sanchez A et al (2001) Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor (beta) in fetal hepatocytes. FASEB J 15(3):741–751

    PubMed  CAS  Google Scholar 

  39. Chen KH, Reece LM, Leary JF (1999) Mitochondrial glutathione modulates TNF-alpha-induced endothelial cell dysfunction. Free Radic Biol Med 27(1–2):100–109

    PubMed  CAS  Google Scholar 

  40. Doughan AK, Harrison DG, Dikalov SI (2008) Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res 102(4):488–496

    PubMed  CAS  Google Scholar 

  41. Widder JD, Fraccarollo D, Galuppo P et al (2009) Attenuation of angiotensin II-induced vascular dysfunction and hypertension by overexpression of Thioredoxin 2. Hypertension 54(2):338–344

    PubMed  CAS  Google Scholar 

  42. O'Connor PM, Gutterman DD (2010) Resurrecting hope for antioxidant treatment of cardiovascular disease: focus on mitochondria. Circ Res 107(1):9–11

    PubMed  Google Scholar 

  43. Moreno MU, San Jose G, Fortuno A, Beloqui O, Diez J, Zalba G (2006) The C242T CYBA polymorphism of NADPH oxidase is associated with essential hypertension. J Hypertens 24(7):1299–1306

    PubMed  CAS  Google Scholar 

  44. Graham D, Huynh NN, Hamilton CA et al (2009) Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 54(2):322–328

    PubMed  CAS  Google Scholar 

  45. Zhou L, Zhu DY (2009) Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20(4):223–230

    PubMed  CAS  Google Scholar 

  46. Schulz E, Jansen T, Wenzel P, Daiber A, Munzel T (2008) Nitric oxide, tetrahydrobiopterin, oxidative stress, and endothelial dysfunction in hypertension. Antioxid Redox Signal 10(6):1115–1126

    PubMed  CAS  Google Scholar 

  47. Ungvari Z, Gupte SA, Recchia FA, Batkai S, Pacher P (2005) Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol 3(3):221–229

    PubMed  CAS  Google Scholar 

  48. Briones AM, Touyz RM (2010) Oxidative stress and hypertension: current concepts. Curr Hypertens Rep 12(2):135–142

    PubMed  CAS  Google Scholar 

  49. Pepine CJ (2009) The impact of nitric oxide in cardiovascular medicine: untapped potential utility. Am J Med 122(5 Suppl):S10–S15

    PubMed  Google Scholar 

  50. Seals DR, Jablonski KL, Donato AJ (2011) Aging and vascular endothelial function in humans. Clin Sci (Lond) 120(9):357–375

    CAS  Google Scholar 

  51. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357(Pt 3):593–615

    PubMed  CAS  Google Scholar 

  52. White RE, Han G, Dimitropoulou C et al (2005) Estrogen-induced contraction of coronary arteries is mediated by superoxide generated in vascular smooth muscle. Am J Physiol Heart Circ Physiol 289(4):H1468–H1475

    PubMed  CAS  Google Scholar 

  53. Jessup JA, Zhang L, Chen AF et al (2011) Neuronal nitric oxide synthase inhibition improves diastolic function and reduces oxidative stress in ovariectomized mRen2. Lewis rats. Menopause

    Google Scholar 

  54. Sartori-Valinotti JC, Iliescu R, Fortepiani LA, Yanes LL, Reckelhoff JF (2007) Sex differences in oxidative stress and the impact on blood pressure control and cardiovascular disease. Clin Exp Pharmacol Physiol 34(9):938–945

    PubMed  CAS  Google Scholar 

  55. Schuessel K, Leutner S, Cairns NJ, Muller WE, Eckert A (2004) Impact of gender on upregulation of antioxidant defence mechanisms in Alzheimer's disease brain. J Neural Transm 111(9):1167–1182

    PubMed  CAS  Google Scholar 

  56. Vassalle C, Maffei S, Boni C, Zucchelli GC (2008) Gender-related differences in oxidative stress levels among elderly patients with coronary artery disease. Fertil Steril 89(3):608–613

    PubMed  CAS  Google Scholar 

  57. Lee IM, Cook NR, Gaziano JM et al (2005) Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women's Health Study: a randomized controlled trial. JAMA 294(1):56–65

    PubMed  CAS  Google Scholar 

  58. Kumar S, Lata K, Mukhopadhyay S, Mukherjee TK (2010) Role of estrogen receptors in pro-oxidative and anti-oxidative actions of estrogens: a perspective. Biochim Biophys Acta 1800(10):1127–1135

    PubMed  CAS  Google Scholar 

  59. Green PS, Gordon K, Simpkins JW (1997) Phenolic A ring requirement for the neuroprotective effects of steroids. J Steroid Biochem Mol Biol 63(4–6):229–235

    PubMed  CAS  Google Scholar 

  60. Miller AA, Drummond GR, Mast AE, Schmidt HH, Sobey CG (2007) Effect of gender on NADPH-oxidase activity, expression, and function in the cerebral circulation: role of estrogen. Stroke 38(7):2142–2149

    PubMed  CAS  Google Scholar 

  61. Wagner AH, Schroeter MR, Hecker M (2001) 17beta-estradiol inhibition of NADPH oxidase expression in human endothelial cells. FASEB J 15(12):2121–2130

    PubMed  CAS  Google Scholar 

  62. Laufs U, Adam O, Strehlow K et al (2003) Down-regulation of Rac-1 GTPase by Estrogen. J Biol Chem 278(8):5956–5962

    PubMed  CAS  Google Scholar 

  63. Satoh M, Matter CM, Ogita H et al (2007) Inhibition of apoptosis-regulated signaling kinase-1 and prevention of congestive heart failure by estrogen. Circulation 115(25):3197–3204

    PubMed  CAS  Google Scholar 

  64. Xu Y, Armstrong SJ, Arenas IA, Pehowich DJ, Davidge ST (2004) Cardioprotection by chronic estrogen or superoxide dismutase mimetic treatment in the aged female rat. Am J Physiol Heart Circ Physiol 287(1):H165–H171

    PubMed  CAS  Google Scholar 

  65. Dantas AP, Franco Mdo C, Silva-Antonialli MM et al (2004) Gender differences in superoxide generation in microvessels of hypertensive rats: role of NAD(P)H-oxidase. Cardiovasc Res 61(1):22–29

    PubMed  CAS  Google Scholar 

  66. Budhiraja R, Kayyali US, Karamsetty M et al (2003) Estrogen modulates xanthine dehydrogenase/xanthine oxidase activity by a receptor-independent mechanism. Antioxid Redox Signal 5(6):705–711

    PubMed  CAS  Google Scholar 

  67. Felty Q (2006) DNA Estrogen-induced synthesis in vascular endothelial cells is mediated by ROS signaling. BMC Cardiovasc Disord 6:16

    PubMed  Google Scholar 

  68. Relling MV, Lin JS, Ayers GD, Evans WE (1992) Racial and gender differences in N-acetyltransferase, xanthine oxidase, and CYP1A2 activities. Clin Pharmacol Ther 52(6):643–658

    PubMed  CAS  Google Scholar 

  69. Levinson DJ, Chalker D (1980) Rat hepatic xanthine oxidase activity: age and sex specific differences. Arthritis Rheum 23(1):77–82

    PubMed  CAS  Google Scholar 

  70. Bhole V, de Vera M, Rahman MM, Krishnan E, Choi H (2010) Epidemiology of gout in women: Fifty-two-year followup of a prospective cohort. Arthritis Rheum 62(4):1069–1076

    PubMed  Google Scholar 

  71. Razmara A, Duckles SP, Krause DN, Procaccio V (2007) Estrogen suppresses brain mitochondrial oxidative stress in female and male rats. Brain Res 1176:71–81

    PubMed  CAS  Google Scholar 

  72. Stirone C, Duckles SP, Krause DN, Procaccio V (2005) Estrogen increases mitochondrial efficiency and reduces oxidative stress in cerebral blood vessels. Mol Pharmacol 68(4):959–965

    PubMed  CAS  Google Scholar 

  73. Duckles SP, Krause DN, Stirone C, Procaccio V (2006) Estrogen and mitochondria: a new paradigm for vascular protection? Mol Interv 6(1):26–35

    PubMed  Google Scholar 

  74. Faraci FM, Didion SP (2004) Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol 24(8):1367–1373

    PubMed  CAS  Google Scholar 

  75. Yager JD, Chen JQ (2007) Mitochondrial estrogen receptors–new insights into specific functions. Trends Endocrinol Metab 18(3):89–91

    PubMed  CAS  Google Scholar 

  76. Yang SH, Liu R, Perez EJ et al (2004) Mitochondrial localization of estrogen receptor beta. Proc Natl Acad Sci U S A 101(12):4130–4135

    PubMed  CAS  Google Scholar 

  77. Frishman WH, Helisch A, Naseer N, Lyons J, Hays RM (2003) Nitric oxide donor drugs in the treatment of cardiovascular disease. In: Frishman WH, Sonnenblick EH, Sica DA (eds) Cardiovascular Pharmacotherapeutics. McGraw-Hill, New York, pp 565–588

    Google Scholar 

  78. Hayashi T, Fukuto JM, Ignarro LJ, Chaudhuri G (1992) Basal release of nitric oxide from aortic rings is greater in female rabbits than in male rabbits: implications for atherosclerosis. Proc Natl Acad Sci U S A 89(23):11259–11263

    PubMed  CAS  Google Scholar 

  79. Kharitonov SA, Logan-Sinclair RB, Busset CM, Shinebourne EA (1994) Peak expiratory nitric oxide differences in men and women: relation to the menstrual cycle. Br Heart J 72(3):243–245

    PubMed  CAS  Google Scholar 

  80. Conrad KP, Joffe GM, Kruszyna H et al (1993) Identification of increased nitric oxide biosynthesis during pregnancy in rats. FASEB J 7(6):566–571

    PubMed  CAS  Google Scholar 

  81. Nuedling S, Kahlert S, Loebbert K et al (1999) 17 Beta-estradiol stimulates expression of endothelial and inducible NO synthase in rat myocardium in vitro and in vivo. Cardiovasc Res 43(3):666–674

    PubMed  CAS  Google Scholar 

  82. Fraser H, Davidge ST, Clanachan AS (2000) Activation of Ca(2+)-independent nitric oxide synthase by 17beta-estradiol in post-ischemic rat heart. Cardiovasc Res 46(1):111–118

    PubMed  CAS  Google Scholar 

  83. Haynes MP, Sinha D, Russell KS et al (2000) Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ Res 87(8):677–682

    PubMed  CAS  Google Scholar 

  84. Bucci M, Roviezzo F, Cicala C, Pinto A, Cirino G (2002) 17-beta-oestradiol-induced vasorelaxation in vitro is mediated by eNOS through hsp90 and akt/pkb dependent mechanism. Br J Pharmacol 135(7):1695–1700

    PubMed  CAS  Google Scholar 

  85. Han G, Ma H, Chintala R et al (2007) Nongenomic, endothelium-independent effects of estrogen on human coronary smooth muscle are mediated by type I (neuronal) NOS and PI3-kinase-Akt signaling. Am J Physiol Heart Circ Physiol 293(1):H314–H321

    PubMed  CAS  Google Scholar 

  86. Han G, Ma H, Chintala R, Fulton DJ, Barman SA, White RE (2009) Essential role of the 90-kilodalton heat shock protein in mediating nongenomic estrogen signaling in coronary artery smooth muscle. J Pharmacol Exp Ther 329(3):850–855

    PubMed  CAS  Google Scholar 

  87. Tan E, Gurjar MV, Sharma RV, Bhalla RC (1999) Estrogen receptor-alpha gene transfer into bovine aortic endothelial cells induces eNOS gene expression and inhibits cell migration. Cardiovasc Res 43(3):788–797

    PubMed  CAS  Google Scholar 

  88. Han G, Yu X, Lu L et al (2006) Estrogen receptor alpha mediates acute potassium channel stimulation in human coronary artery smooth muscle cells. J Pharmacol Exp Ther 316(3):1025–1030

    PubMed  CAS  Google Scholar 

  89. Yang YM, Huang A, Kaley G, Sun D (2009) eNOS uncoupling and endothelial dysfunction in aged vessels. Am J Physiol Heart Circ Physiol 297(5):H1829–H1836

    PubMed  CAS  Google Scholar 

  90. Kuzkaya N, Weissmann N, Harrison DG, Dikalov S (2005) Interactions of peroxynitrite with uric acid in the presence of ascorbate and thiols: implications for uncoupling endothelial nitric oxide synthase. Biochem Pharmacol 70(3):343–354

    PubMed  CAS  Google Scholar 

  91. Reckelhoff JF, Kellum JA, Blanchard EJ, Bacon EE, Wesley AJ, Kruckeberg WC (1994) Changes in nitric oxide precursor, l-arginine, and metabolites, nitrate and nitrite, with aging. Life Sci 55(24):1895–1902

    PubMed  CAS  Google Scholar 

  92. Berkowitz DE, White R, Li D et al (2003) Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation 108(16):2000–2006

    PubMed  CAS  Google Scholar 

  93. Chen EY, Kallwitz E, Leff SE et al (2000) Age-related decreases in GTP-cyclohydrolase-I immunoreactive neurons in the monkey and human substantia nigra. J Comp Neurol 426(4):534–548

    PubMed  CAS  Google Scholar 

  94. Manson JE, Hsia J, Johnson KC et al (2003) Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med 349(6):523–534

    PubMed  CAS  Google Scholar 

  95. Taylor HS, Manson JE (2011) Update in hormone therapy use in menopause. J Clin Endocrinol Metab 96(2):255–264

    PubMed  CAS  Google Scholar 

  96. Salpeter SR, Cheng J, Thabane L, Buckley NS, Salpeter EE (2009) Bayesian meta-analysis of hormone therapy and mortality in younger postmenopausal women. Am J Med. Nov 122(11):1016–1022 e1011

    Google Scholar 

  97. Clarkson TB, Mehaffey MH (2009) Coronary heart disease of females: lessons learned from nonhuman primates. Am J Primatol 71(9):785–793

    PubMed  Google Scholar 

  98. Szasz T, Thakali K, Fink GD, Watts SW (2007) A comparison of arteries and veins in oxidative stress: producers, destroyers, function, and disease. Exp Biol Med (Maywood) 232(1):27–37

    CAS  Google Scholar 

  99. Papaharalambus CA, Griendling KK (2007) Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med 17(2):48–54

    PubMed  CAS  Google Scholar 

  100. Miller FJ Jr, Gutterman DD, Rios CD, Heistad DD, Davidson BL (1998) Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis. Circ Res 82(12):1298–1305

    PubMed  CAS  Google Scholar 

  101. Castier Y, Brandes RP, Leseche G, Tedgui A, Lehoux S (2005) p47phox-dependent NADPH oxidase regulates flow-induced vascular remodeling. Circ Res 97(6):533–540

    PubMed  CAS  Google Scholar 

  102. Clarkson TB (2007) Estrogen effects on arteries vary with stage of reproductive life and extent of subclinical atherosclerosis progression. Menopause 14(3 Pt 1):373–384

    PubMed  Google Scholar 

  103. Wing LY, Chen YC, Shih YY, Cheng JC, Lin YJ, Jiang MJ (2009) Effects of oral estrogen on aortic ROS-generating and -scavenging enzymes and atherosclerosis in apoE-deficient mice. Exp Biol Med (Maywood) 234(9):1037–1046

    CAS  Google Scholar 

  104. Hsia J, Otvos JD, Rossouw JE et al (2008) Lipoprotein particle concentrations may explain the absence of coronary protection in the women's health initiative hormone trials. Arterioscler Thromb Vasc Biol 28(9):1666–1671

    PubMed  CAS  Google Scholar 

  105. Merz CN, Johnson BD, Berga S, Braunstein G, Reis SE, Bittner V (2006) Past oral contraceptive use and angiographic coronary artery disease in postmenopausal women: data from the National Heart, Lung, and Blood Institute-sponsored Women's Ischemia Syndrome Evaluation. Fertil Steril 85(5):1425–1431

    PubMed  Google Scholar 

  106. Clarkson TB, Anthony MS, Klein KP (1996) Hormone replacement therapy and coronary artery atherosclerosis: the monkey model. Br J Obstet Gynaecol 103(Suppl 13):53–57 discussion 57–58

    PubMed  CAS  Google Scholar 

  107. Clarkson TB (2002) The new conundrum: do estrogens have any cardiovascular benefits? Int J Fertil Womens Med 47(2):61–68

    PubMed  CAS  Google Scholar 

  108. Rosenfeld ME, Kauser K, Martin-McNulty B, Polinsky P, Schwartz SM, Rubanyi GM (2002) Estrogen inhibits the initiation of fatty streaks throughout the vasculature but does not inhibit intra-plaque hemorrhage and the progression of established lesions in apolipoprotein E deficient mice. Atherosclerosis 164:251–259

    PubMed  CAS  Google Scholar 

  109. Grodstein F, Manson JE, Stampfer MJ (2006) Hormone therapy and coronary heart disease: the role of time since menopause and age at hormone initiation. J Womens Health (Larchmt) 15(1):35–44

    Google Scholar 

  110. Billon-Gales A, Fontaine C, Douin-Echinard V et al (2009) Endothelial estrogen receptor-alpha plays a crucial role in the atheroprotective action of 17beta-estradiol in low-density lipoprotein receptor-deficient mice. Circulation 120(25):2567–2576

    PubMed  CAS  Google Scholar 

  111. Losordo DW, Kearney M, Kim EA, Jekanowski J, Isner JM (1994) Variable expression of the estrogen receptor in normal and atherosclerotic coronary arteries of premenopausal women. Circulation 89(4):1501–1510

    PubMed  CAS  Google Scholar 

  112. Cosentino F, Hurlimann D (2008) Delli Gatti C, et al. Chronic treatment with tetrahydrobiopterin reverses endothelial dysfunction and oxidative stress in hypercholesterolaemia. Heart 94(4):487–492

    PubMed  CAS  Google Scholar 

  113. Ryoo S, Gupta G, Benjo A et al (2008) Endothelial arginase II: a novel target for the treatment of atherosclerosis. Circ Res 102(8):923–932

    PubMed  CAS  Google Scholar 

  114. Vasquez-Vivar J, Duquaine D, Whitsett J, Kalyanaraman B, Rajagopalan S (2002) Altered tetrahydrobiopterin metabolism in atherosclerosis: implications for use of oxidized tetrahydrobiopterin analogues and thiol antioxidants. Arterioscler Thromb Vasc Biol 22(10):1655–1661

    PubMed  CAS  Google Scholar 

  115. Ozaki M, Kawashima S, Yamashita T et al (2002) Overexpression of endothelial nitric oxide synthase accelerates atherosclerotic lesion formation in apoE-deficient mice. J Clin Invest 110(3):331–340

    PubMed  CAS  Google Scholar 

  116. Wang CH, Li SH, Weisel RD et al (2005) Tetrahydrobiopterin deficiency exaggerates intimal hyperplasia after vascular injury. Am J Physiol Regul Integr Comp Physiol 289(2):R299–R304

    PubMed  CAS  Google Scholar 

  117. Yada T, Kaji S, Akasaka T et al (2007) Changes of asymmetric dimethylarginine, nitric oxide, tetrahydrobiopterin, and oxidative stress in patients with acute myocardial infarction by medical treatments. Clin Hemorheol Microcirc 37(3):269–276

    PubMed  CAS  Google Scholar 

  118. Blackwell KA, Sorenson JP, Richardson DM et al (2004) Mechanisms of aging-induced impairment of endothelium-dependent relaxation: role of tetrahydrobiopterin. Am J Physiol Heart Circ Physiol 287(6):H2448–H2453

    PubMed  CAS  Google Scholar 

  119. d'Uscio LV, Katusic ZS (2006) Increased vascular biosynthesis of tetrahydrobiopterin in apolipoprotein E-deficient mice. Am J Physiol Heart Circ Physiol 290(6):H2466–H2471

    PubMed  Google Scholar 

  120. Amos AF, McCarty DJ, Zimmet P (1997) The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med 14(Suppl 5):S1–S85

    PubMed  Google Scholar 

  121. Legato MJ, Gelzer A, Goland R et al (2006) Gender-specific care of the patient with diabetes: review and recommendations. Gend Med 3(2):131–158

    PubMed  Google Scholar 

  122. Huxley R, Barzi F, Woodward M (2006) Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ 332(7533):73–78

    PubMed  Google Scholar 

  123. Zuanetti G, Latini R, Maggioni AP, Santoro L, Franzosi MG (1993) Influence of diabetes on mortality in acute myocardial infarction: data from the GISSI-2 study. J Am Coll Cardiol 22(7):1788–1794

    PubMed  CAS  Google Scholar 

  124. Juutilainen A, Kortelainen S, Lehto S, Ronnemaa T, Pyorala K, Laakso M (2004) Gender difference in the impact of type 2 diabetes on coronary heart disease risk. Diabetes Care 27(12):2898–2904

    PubMed  Google Scholar 

  125. Sowers JR (2004) Diabetes in the elderly and in women: cardiovascular risks. Cardiol Clin 22(4):541–551 vi

    Google Scholar 

  126. Cosentino F, Hishikawa K, Katusic ZS, Luscher TF (1997) High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation 96(1):25–28

    PubMed  CAS  Google Scholar 

  127. Nishikawa T, Edelstein D, Du XL et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404(6779):787–790

    PubMed  CAS  Google Scholar 

  128. Lund DD, Faraci FM, Miller FJ Jr, Heistad DD (2000) Gene transfer of endothelial nitric oxide synthase improves relaxation of carotid arteries from diabetic rabbits. Circulation 101(9):1027–1033

    PubMed  CAS  Google Scholar 

  129. Fukumoto H, Naito Z, Asano G, Aramaki T (1998) Immunohistochemical and morphometric evaluations of coronary atherosclerotic plaques associated with myocardial infarction and diabetes mellitus. J Atheroscler Thromb 5(1):29–35

    PubMed  CAS  Google Scholar 

  130. Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50(5):567–575

    PubMed  CAS  Google Scholar 

  131. Evans RW, Orchard TJ (1994) Oxidized lipids in insulin-dependent diabetes mellitus: a sex-diabetes interaction? Metabolism 43(9):1196–1200

    PubMed  CAS  Google Scholar 

  132. Inoguchi T, Li P, Umeda F et al (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C–dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49(11):1939–1945

    PubMed  CAS  Google Scholar 

  133. Desco MC, Asensi M, Marquez R et al (2002) Xanthine oxidase is involved in free radical production in type 1 diabetes: protection by allopurinol. Diabetes 51(4):1118–1124

    PubMed  CAS  Google Scholar 

  134. Ahmed B, Bairey Merz CN, Johnson BD et al (2008) Diabetes mellitus, hypothalamic hypoestrogenemia, and coronary artery disease in premenopausal women (from the National Heart, Lung, and Blood Institute sponsored WISE study). Am J Cardiol 102(2):150–154

    PubMed  Google Scholar 

  135. Wenzel P, Daiber A, Oelze M et al (2008) Mechanisms underlying recoupling of eNOS by HMG-CoA reductase inhibition in a rat model of streptozotocin-induced diabetes mellitus. Atherosclerosis 198(1):65–76

    PubMed  CAS  Google Scholar 

  136. Romero MJ, Platt DH, Tawfik HE et al (2008) Diabetes-induced coronary vascular dysfunction involves increased arginase activity. Circ Res 102(1):95–102

    PubMed  CAS  Google Scholar 

  137. Fard A, Tuck CH, Donis JA et al (2000) Acute elevations of plasma asymmetric dimethylarginine and impaired endothelial function in response to a high-fat meal in patients with type 2 diabetes. Arterioscler Thromb Vasc Biol 20(9):2039–2044

    PubMed  CAS  Google Scholar 

  138. Cai S, Khoo J, Channon KM (2005) Augmented BH4 by gene transfer restores nitric oxide synthase function in hyperglycemic human endothelial cells. Cardiovasc Res 65(4):823–831

    PubMed  CAS  Google Scholar 

  139. Pfister SL (2011) Role of lipoxygenase metabolites of arachidonic Acid in enhanced pulmonary artery contractions of female rabbits. Hypertension 57(4):825–832

    PubMed  CAS  Google Scholar 

  140. Pugh ME, Hemnes AR (2010) Development of pulmonary arterial hypertension in women: interplay of sex hormones and pulmonary vascular disease. Womens Health (Lond Engl) 6(2):285–296

    Google Scholar 

  141. Wu SC, Caravita S, Lisi E et al (2009) Pulmonary arterial hypertension. Intern Emerg Med 4(6):459–470

    PubMed  Google Scholar 

  142. Rabinovitch M (2008) Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest 118(7):2372–2379

    PubMed  CAS  Google Scholar 

  143. Perez-Vizcaino F, Cogolludo A, Moreno L (2010) Reactive oxygen species signaling in pulmonary vascular smooth muscle. Respir Physiol Neurobiol 174(3):212–220

    PubMed  CAS  Google Scholar 

  144. Archer SL, Huang J, Henry T, Peterson D, Weir EK (1993) A redox-based O2 sensor in rat pulmonary vasculature. Circ Res 73(6):1100–1112

    PubMed  CAS  Google Scholar 

  145. Barman SA, Zhu S, White RE (2005) Hypoxia modulates cyclic AMP activation of BkCa channels in rat pulmonary arterial smooth muscle. Lung 183(5):353–361

    PubMed  CAS  Google Scholar 

  146. Barman SA, Zhu S, White RE (2004) Protein kinase C inhibits BKCa channel activity in pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 286(1):L149–L155

    PubMed  CAS  Google Scholar 

  147. Redout EM, van der Toorn A, Zuidwijk MJ et al (2010) Antioxidant treatment attenuates pulmonary arterial hypertension-induced heart failure. Am J Physiol Heart Circ Physiol 298(3):H1038–H1047

    PubMed  CAS  Google Scholar 

  148. Grobe AC, Wells SM, Benavidez E et al (2006) Increased oxidative stress in lambs with increased pulmonary blood flow and pulmonary hypertension: role of NADPH oxidase and endothelial NO synthase. Am J Physiol Lung Cell Mol Physiol 290(6):L1069–L1077

    PubMed  CAS  Google Scholar 

  149. Konduri GG, Bakhutashvili I, Eis A, Pritchard K Jr (2007) Oxidant stress from uncoupled nitric oxide synthase impairs vasodilation in fetal lambs with persistent pulmonary hypertension. Am J Physiol Heart Circ Physiol 292(4):H1812–H1820

    PubMed  CAS  Google Scholar 

  150. Khoo JP, Zhao L, Alp NJ et al (2005) Pivotal role for endothelial tetrahydrobiopterin in pulmonary hypertension. Circulation 111(16):2126–2133

    PubMed  CAS  Google Scholar 

  151. Jankov RP, Kantores C, Pan J, Belik J (2008) Contribution of xanthine oxidase-derived superoxide to chronic hypoxic pulmonary hypertension in neonatal rats. Am J Physiol Lung Cell Mol Physiol 294(2):L233–L245

    PubMed  CAS  Google Scholar 

  152. Lahm T, Patel KM, Crisostomo PR et al (2007) Endogenous estrogen attenuates pulmonary artery vasoreactivity and acute hypoxic pulmonary vasoconstriction: the effects of sex and menstrual cycle. Am J Physiol Endocrinol Metab 293(3):E865–E871

    PubMed  CAS  Google Scholar 

  153. Lahm T, Crisostomo PR, Markel TA et al (2008) Selective estrogen receptor-alpha and estrogen receptor-beta agonists rapidly decrease pulmonary artery vasoconstriction by a nitric oxide-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 295(5):R1486–R1493

    PubMed  CAS  Google Scholar 

  154. Rabinovitch M, Gamble WJ, Miettinen OS, Reid L (1981) Age and sex influence on pulmonary hypertension of chronic hypoxia and on recovery. Am J Physiol 240(1):H62–H72

    PubMed  CAS  Google Scholar 

  155. Stupfel M, Pesce VH, Gourlet V, Bouley G, Elabed A, Lemercerre C (1984) Sex-related factors in acute hypoxia survival in one strain of mice. Aviat Space Environ Med 55(2):136–140

    PubMed  CAS  Google Scholar 

  156. Smith AM, Bennett RT, Jones TH, Cowen ME, Channer KS, Jones RD (2008) Characterization of the vasodilatory action of testosterone in the human pulmonary circulation. Vasc Health Risk Manag 4(6):1459–1466

    PubMed  CAS  Google Scholar 

  157. Beretta L, Caronni M, Origgi L, Ponti A, Santaniello A, Scorza R (2006) Hormone replacement therapy may prevent the development of isolated pulmonary hypertension in patients with systemic sclerosis and limited cutaneous involvement. Scand J Rheumatol 35(6):468–471

    PubMed  CAS  Google Scholar 

  158. Morse JH, Horn EM, Barst RJ (1999) Hormone replacement therapy: a possible risk factor in carriers of familial primary pulmonary hypertension. Chest 116(3):847

    PubMed  CAS  Google Scholar 

  159. Sweeney L, Voelkel NF (2009) Estrogen exposure, obesity and thyroid disease in women with severe pulmonary hypertension. Eur J Med Res 14(10):433–442

    PubMed  Google Scholar 

  160. Lahm T, Crisostomo PR, Markel TA et al (2008) The effects of estrogen on pulmonary artery vasoreactivity and hypoxic pulmonary vasoconstriction: potential new clinical implications for an old hormone. Crit Care Med 36(7):2174–2183

    PubMed  CAS  Google Scholar 

  161. Kleiger RE, Boxer M, Ingham RE, Harrison DC (1976) Pulmonary hypertension in patients using oral contraceptives. A report of six cases. Chest 69(2):143–147

    PubMed  CAS  Google Scholar 

  162. Bowers R, Cool C, Murphy RC et al (2004) Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med 169(6):764–769

    PubMed  Google Scholar 

  163. Farhat MY, Ramwell PW (1992) Estradiol potentiates the vasopressor response of the isolated perfused rat lung to the thromboxane mimic U-46619. J Pharmacol Exp Ther 261(2):686–691

    PubMed  CAS  Google Scholar 

  164. Zhu D, Medhora M, Campbell WB, Spitzbarth N, Baker JE, Jacobs ER (2003) Chronic hypoxia activates lung 15-lipoxygenase, which catalyzes production of 15-HETE and enhances constriction in neonatal rabbit pulmonary arteries. Circ Res 92(9):992–1000

    PubMed  CAS  Google Scholar 

  165. Zhang L, Ma J, Li Y et al (2010) 15-Hydroxyeicosatetraenoic acid (15-HETE) protects pulmonary artery smooth muscle cells against apoptosis via HSP90. Life Sci 87(7–8):223–231

    PubMed  CAS  Google Scholar 

  166. Cho KJ, Seo JM, Kim JH (2011) Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species. Mol Cells 32(1):1–5

    PubMed  CAS  Google Scholar 

  167. Funk CD, FitzGerald GA (2007) COX-2 inhibitors and cardiovascular risk. J Cardiovasc Pharmacol 50(5):470–479

    PubMed  CAS  Google Scholar 

  168. Egan KM, Lawson JA, Fries S et al (2004) COX-2-derived prostacyclin confers atheroprotection on female mice. Science 306(5703):1954–1957

    PubMed  CAS  Google Scholar 

  169. Barlow RS, White RE (1998) Hydrogen peroxide relaxes porcine coronary arteries by stimulating BKCa channel activity. Am J Physiol 275(4 Pt 2):H1283–H1289

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to recognize funding sources that have helped support their research: The National Heart, Lung, and Blood Institute (HL07389, HL68026, White and Barman) and the American Heart Association (Scientist Development Grant, Han; 055149B, Barman).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

White, R.E., Barman, S.A., Zhu, S., Han, G. (2013). Relationship of Oxidative Stress with Cardiovascular Disease. In: Agarwal, A., Aziz, N., Rizk, B. (eds) Studies on Women's Health. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-041-0_15

Download citation

Publish with us

Policies and ethics