Skip to main content

Metabolism and Nutrition

  • Chapter
  • First Online:
Space Physiology and Medicine

Abstract

Nutritional requirements for crew members on extended flights have been derived largely by extrapolation from ground-based research, from the extensive metabolic studies conducted in the Skylab program, from measurements conducted on Spacelab missions, the Space Shuttle, the Russian space station Mir, and the International Space Station (ISS). Understanding the ways in which nutrients are metabolized by crew members under the unique conditions of space flight is essential for maintaining long-term crew health, particularly the development of strategies for preventing undesirable changes in lean body mass so as to maintain bone-mineral integrity and muscle performance. Such strategies must include the consumption of sufficient amounts of energy and protein, among other nutrients. Because foods and the food systems to be flown in space must meet the unusual constraints associated with space craft and space flight conditions, this chapter opens with descriptions of the food systems developed for the various U.S. space programs, including the ISS. Next follows an outline of planned food systems for vehicles to be used for return for very long-duration space flights, beyond low Earth orbit, and trips to other solar system bodies. The remainder of the chapter reviews the knowledge collected to date on nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lachance PA, Nanz RA, Klicka MV. Food consumption on the Gemini IV, V, and VII missions, NASA TM X-58010. Washington, DC: NASA; 1967.

    Google Scholar 

  2. Nanz RA, Michel EL, Lachance PA. Evolution of space feeding concepts during the Mercury and Gemini space programs. Food Technol. 1967;21:52–8.

    Google Scholar 

  3. Bourland CT, Kloeris V, Vodovotz Y. Crew food systems. In: Lane HW, Sauer RL, Feeback D, editors. Isolation NASA experiments in closed-environment living, vol. 104. San Diego, CA: American Astronautical Society; 2002. p. 261–91.

    Google Scholar 

  4. Smith MC, Heidelbaugh ND, Rambaut PC, et al. Apollo food technology. In: Johnston RS, Dietlein LF, Berry CA, editors. Biomedical results from Apollo, NASA SP-368. Washington, DC: US Government Printing Office; 1975. p. 437–84.

    Google Scholar 

  5. Johnston RS. Skylab medical program overview. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab, NASA SP-377. Washington, DC: US Government Printing Office; 1977. p. 3–19.

    Google Scholar 

  6. Bourland CT, Kloeris V, Rice BL, Vodovotz Y. Food systems for space and planetary flights. In: Lane HW, Schoeller D, editors. Nutrition in spaceflight and weightlessness models. Boca Raton, FL: CRC Press; 2000. p. 19–40.

    Google Scholar 

  7. Smith SM, Zwart SR, Heer M, Hudson EK, Shackelford L, Morgan JL. Men and women in space: bone loss and kidney stone risk after long-duration spaceflight. J Bone Miner Res. 2014;29(7):1639–45.

    Article  PubMed  Google Scholar 

  8. Smith MC, Huber CS, Heidelbaugh ND. Apollo 14 food system. Aerosp Med. 1971;42(11):1185–92.

    PubMed  Google Scholar 

  9. Rambaut PC, Leach CS, Leonard JI. Observations in energy balance in man during spaceflight. Am J Physiol. 1977;233(5):R208–12.

    CAS  PubMed  Google Scholar 

  10. Klicka MV, Smith MC. Food for US manned space flight, technical report Natick TR82/019. Natick, MA: US Army Research and Development Center; 1982.

    Google Scholar 

  11. Bourland CT, Rapp RM, Smith MC. Space shuttle food system. Food Technol. 1977;31(9):40–5.

    Google Scholar 

  12. Hale W, Lane H, Chapline F, Lulla K. Wings in orbit scientific and engineering accomplishments, of Space Shuttle Program 1971–2010, NASA SP 20130-3409. Washington, DC: Government Printing Office; 2010.

    Google Scholar 

  13. Cahill Jr GF. Starvation in man. N Engl J Med. 1970;282(12):668–75.

    Article  CAS  PubMed  Google Scholar 

  14. Lane HW, LeBlanc AD, Putcha L, Whitson PA. Nutrition and human physiological adaptations to space flight. Am J Clin Nutr. 1993;58(5):583–8.

    CAS  PubMed  Google Scholar 

  15. Lane HW, Gretebeck RJ, Schoeller DA, Davis-Street J, Socki RA, Gibson EK. Comparison of ground-based and space flight energy expenditure and water turnover in middle-aged healthy male US astronauts. Am J Clin Nutr. 1997;65(1):4–12.

    CAS  PubMed  Google Scholar 

  16. Leach CS, Alfrey CP, Suki WN, et al. Regulation of body fluid compartments during short-term spaceflight. J Appl Physiol. 1996;81:105–16.

    CAS  PubMed  Google Scholar 

  17. Leach CS, Altchuler SI, Cintrón-Trevino NM. The endocrine and metabolic responses to space flight. Med Sci Sports Exerc. 1983;15(5):432–40.

    Article  CAS  PubMed  Google Scholar 

  18. Lane HW, Zwart S, Kloeris V, Smith SM. Food and nutrition for space flight. In: Berdanier CD, Dwyer J, Felman ED, editors. Handbook of nutrition and food. 3rd ed. Baco Raton, FL: CRC Press; 2013.

    Google Scholar 

  19. Smith SM, Davis-Street JE, Fontenot TB, Lane HW. Assessment of a portable clinical blood analyzer during space flight. Clin Chem. 1997;43(6 Pt 1):1056–65.

    CAS  PubMed  Google Scholar 

  20. Smith SM, Davis-Street JE, Rice BL, Nillen JL, Gillman PL, Block G. Nutritional status assessment in semi-closed environments: ground-based and spaceflight studies in humans. J Nutr. 2001;131:2053–61.

    CAS  PubMed  Google Scholar 

  21. Smith SM, Zwart SR, Block G, Rice BL, Davis-Street JE. Nutritional status assessment in International Space Station crewmembers. J Nutr. 2005;135:437–43.

    CAS  PubMed  Google Scholar 

  22. Smith SM, Lane HW, Zwart SR. Space flight metabolism and nutritional support. In: Barratt MR, Pool SL, editors. Principles of clinical medicine for space flight. New York, NY: Springer; 2008.

    Google Scholar 

  23. Smith SM, Zwart SR, Block G, Rice BL, Davis-Street JE. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J Nutr. 2005;135(3):437–43.

    CAS  PubMed  Google Scholar 

  24. Lane HW, Bourland C, Barrett A, Heer M, Smith Scott M. The role of nutritional research in the success of human space flight. Adv Nutr. 2013;4(5):521–3.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wheeler RM. Bioregenerative life support and nutritional implications for planetary exploration. In: Lane HW, Schoeller D, editors. Nutrition in spaceflight and weightlessness models. Boca Raton: CRC Press; 2000. p. 41–67.

    Google Scholar 

  26. Henninger DL (2002) Test phases and major finds. In: Lane, HW, Sauer, RL, Feeback DL, editor. Isolation NASA experiments in closed-environment living. Am Astronaut Soc. 2002;104(202):35–58.

    Google Scholar 

  27. Kloeris V, Vodovotz Y, Bye L, Quay-Stiller C, Lane E. Design and implementation of a vegetarian food system for a closed chamber test. Life Support Biosph Sci. 1998;5:231–42.

    CAS  PubMed  Google Scholar 

  28. Bourland CT. The development of food systems for space. Trends Food Sci Technol. 1993;4(9):271–6.

    Article  Google Scholar 

  29. Rambaut PC, Smith Jr MC, Leach CS, Whedon GD, Reid J. Nutrition and responses to zero gravity. Fed Proc. 1977;36(5):1678–82.

    CAS  PubMed  Google Scholar 

  30. Thornton W, Ord J. Physiological mass measurements in Skylab. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab, NASA SP-377. Washington, DC: US Government Printing Office; 1977. p. 175–82.

    Google Scholar 

  31. Whedon G, Lutwak L, Rambaut P, et al. Mineral and nitrogen metabolic studies, experiment M071. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab, NASA SP-377. Washington, DC: US Government Printing Office; 1977. p. 164–74.

    Google Scholar 

  32. Smith SM, Block G, Davis-Street JE, DeKerlegand DE, Fanselow SA, Fesperman JV, Gillman PL, Nillen JL, Rice BL, Smith MD. Nutritional status assessment during phases IIa and III of the Lunar-Mars life support test project. In: Lane HW, Sauer RL, Feeback D, editors. Isolation NASA experiments in closed-environment living, vol. 104. San Diego, CA: American Astronautical Society; 2002. p. 261–91.

    Google Scholar 

  33. Smith SM, Heer M, Shackelford LC, Sibonga JD, Ploutz-Synder L, Zwart SR. Benefits for bone from resistance exercise and nutrition in long-during space flight: evidence from biochemistry and densitometry. J Bone Miner Res. 2012;27(9):1896–906.

    Article  CAS  PubMed  Google Scholar 

  34. Leach CS, Rambaut PC. Biochemical responses of the Skylab crewmen: an overview. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab, NASA SP-377. Washington, DC: US Government Printing Office; 1977. p. 204–16.

    Google Scholar 

  35. LeBlanc A, Rowe R, Schneider V, Evans H, Hedrick T. Regional muscle loss after short duration spaceflight. Aviat Space Environ Med. 1995;66(12):1151–4.

    CAS  PubMed  Google Scholar 

  36. Grigoriev AI, Egorov AD. Physiological aspects of adaptation of main human body systems during and after spaceflights. Adv Space Biol Med. 1992;2:43–82.

    Article  CAS  PubMed  Google Scholar 

  37. Cahill Jr GF. Survival in starvation (editorial). Am J Clin Nutr. 1998;68(1):1–2.

    CAS  PubMed  Google Scholar 

  38. Chirkov BA. Energy expenditure of the crew during 18-day flight of the Soyuz-9 spacecraft [in Russian]. Kosm Biol Aviakosm Med. 1975;9(1):48–51.

    CAS  PubMed  Google Scholar 

  39. Gretebeck RJ, Schoeller DA, Gibson EK, Lane HW. Energy expenditure during antiorthostatic bed rest (simulated microgravity). J Appl Physiol (1985). 1995;78(6):2207–11.

    CAS  Google Scholar 

  40. Keys A, Brozek J, Henschel A, et al. The biology of human starvation. Minneapolis, MN: University of Minnesota Press; 1950.

    Google Scholar 

  41. Lane HW, Leach CS, Smith SM. Fluid and electrolyte status. In: Lane HW, Schoeller D, editors. Nutrition in spaceflight and weightlessness models. Boca Raton, FL: CRC Press; 2000. p. 119–39.

    Google Scholar 

  42. Kasyan II, Makarov GF. External respiration, gas exchange, and energy expenditures of man in weightlessness. Kosm Biol Aviakosm Med. 1984;18(6):4–9.

    Google Scholar 

  43. Lane HW, Gretebeck RJ. Metabolic energy required for flight. Advances in Space Research. 1994;14(11):147–55.

    Article  CAS  PubMed  Google Scholar 

  44. Lane HW, Smith SM. Nutrition in space. In: Shils ME, Olson JA, Shike M, Rose AC, editors. Modern nutrition in health and disease. 9th ed. Baltimore, MD: Williams & Wilkins; 1999. p. 783–8.

    Google Scholar 

  45. Lane HW, Feeback DL. Water and energy dietary requirements and endocrinology of human space flight. Nutrition. 2002;18(10):820–8.

    Article  CAS  PubMed  Google Scholar 

  46. Smith SM, Zwart SR, Huntoon CL. Endocrine and biochemical functions. In: Risin D, Stepaniak PC, editors. Biomedical results of the Space Shuttle Program, NASA/SP-2013-607. Washington, DC: NASA; 2013. p. 157–70.

    Google Scholar 

  47. Smith SM, Zwart SR, McMonigal KA, Huntoon CL. Thyroid status of space shuttle crewmembers: effects of iodine removal. Aviat Space Environ Med. 2011;82(1):49–51.

    Article  PubMed  Google Scholar 

  48. Michel EL, Rummel JA, Sawin CF, Buderer MC, Lem JD. Results of Skylab medical experiment M171-metabolic activity. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab, NASA SP-377. Washington, DC: US Government Printing Office; 1977. p. 372–87.

    Google Scholar 

  49. Barta DJ, Henninger DL. Johnson Space Center’s regenerative life support testbed. Adv Space Res. 1996;18(1-2):211–21.

    Article  CAS  PubMed  Google Scholar 

  50. Smith SM, Zwart SR, Kloeris V, Heer M. Nutritional biochemistry of space flight. Space Science: Exploration and Policies Series, Nova Science Publishers, Inc. New York; 2009.

    Google Scholar 

  51. Oganov VS, Rakhmanov AS, Novikov VE, Zatsepin ST, Rodionova SS, Cann C. The state of human bone tissue during space flight. Acta Astronautica. 1991;23:129–33.

    Article  CAS  PubMed  Google Scholar 

  52. Hackney KJ, Cook SB, Ploutz-Snyder LL. Nutrition and resistance exercise during reconditioning from unloading. Aviat Space Environ Med. 2011;82(8):805–9.

    Article  CAS  PubMed  Google Scholar 

  53. Leonard JI, Leach CS, Rambaut PC. Quantitation of tissue loss during prolonged space flight. Am J Clin Nutr. 1983;38(5):667–79.

    CAS  PubMed  Google Scholar 

  54. Rice BL, Vickers ZM, Rose MS. Fluid shifts during head-down bed rest do not influence flavor sensitivity (abstract A39). Presented at the 67th annual meeting of the aerospace medical association, 5–9 May 1996, Atlanta, GA.

    Google Scholar 

  55. Shangraw RE, Stuart CA, Price MJ, Peters MJ, Wolfe RR. Insulin responsiveness of protein metabolism in vivo following bed rest in humans. Am J Physiol. 1988;255(4 Pt 1):E548–58.

    CAS  PubMed  Google Scholar 

  56. Shackelford LC, LeBlanc AD, Driscoll TB, Evans HJ, Rianon NJ, Smith SM, Spector E, Feeback DL, Lai D. Resistance exercise as a countermeasure to disuse-induced bone loss. J Appl Physiol. 2004;97:119–29.

    Article  CAS  PubMed  Google Scholar 

  57. Zwart SR, Davis-Street JE, Paddon-Jones D, Ferrando AA, Wolfe RR, Smith SM. Amino acid supplementation alters bone metabolism during simulated weightlessness. J Appl Physiol. 2005;99(1):134–40.

    Article  CAS  PubMed  Google Scholar 

  58. Dawson-Hughes B. Interaction of dietary calcium and protein in bone health in humans. J Nutr. 2003;133(3):852S–4.

    CAS  PubMed  Google Scholar 

  59. Stein TP. Protein and muscle homeostasis: the role of nutrition. In: Lane HW, Schoeller D, editors. Nutrition in spaceflight and weightlessness models. Boca Raton: CRC Press; 2000. p. 171–7.

    Google Scholar 

  60. Stein TP, Leskiw MJ, Schluter MD, Hoyt RW, Lane HW, Gretebeck RE, LeBlanc AD. Energy expenditure and balance during spaceflight on the space shuttle. Am J Physiol. 1999;276(6 Pt 2):R1739–48.

    CAS  PubMed  Google Scholar 

  61. Heidelbaugh ND, Wescott DE, Kare MR, Bourland CT, Smith MC, Rapp RM. Taste and aroma testing. In: Skylab, editor. Skylab-4 preliminary biomedical report, JSC 08818. Houston, TX: Johnson Space Center; 1975.

    Google Scholar 

  62. Watt DGD, Money KE, Bondar RL, Thirsk RB, Garneau M, Scully-Power P. Canadian medical experiments on shuttle flight 41-G. Can Aeronaut Space J. 1985;31(3):215–26.

    CAS  PubMed  Google Scholar 

  63. Holland AW, Marsh RW. Psychologic and psychiatric considerations. In: Nicogossian AE, Huntoon CL, Pool SL, editors. Space physiology and medicine. 3rd ed. Philadelphia: Lea & Febiger; 1994. p. 424–34.

    Google Scholar 

  64. Loehr JA, Lee SM, English KL, Sibonga J, Smith SM, Spiering BA, Hagan RD. Musculoskeletal adaptations to training with the advanced resistive exercise device. Med Sci Sports Exerc. 2011;43(1):146–56.

    Article  PubMed  Google Scholar 

  65. Whitson PA, Pietrzyk RA, Sams CF. Urine volume and its effects on renal stone risk in astronauts. Aviat Space Environ Med. 2001;72(4):368–72.

    CAS  PubMed  Google Scholar 

  66. Whitson PA, Pietrzyk RA, Jones JA, Nelman-Gonzalez M, Hudson EK, Sams CF. Effect of potassium citrate therapy on the risk of renal stone formation during spaceflight. J Urol. 2009;182(5):2490–6.

    Article  CAS  PubMed  Google Scholar 

  67. Seedhouse E. Trailblazing medicine: sustaining explorers during interplanetary missions. New York, NY: Springer; 2011. p. 24.

    Book  Google Scholar 

  68. Lutwak L, Wheedon GD, Lachance PA, Reid JM, Lipscom HS. Mineral, electrolyte and nitrogen balance studies of the Gemini-VII fourteen-day orbital space flight. J Clin Endocrinol Metab. 1969;29(9):1140–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen W. Lane PhD, RD .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Ch 11 Metabolism and Nutrition (PDF 746 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Lane, H.W., Smith, S.M., Kloeris, V.L. (2016). Metabolism and Nutrition. In: Nicogossian, A., Williams, R., Huntoon, C., Doarn, C., Polk, J., Schneider, V. (eds) Space Physiology and Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6652-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6652-3_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6650-9

  • Online ISBN: 978-1-4939-6652-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics