Skip to main content

The Effects of Inflammation, Infection and Antibiotics on the Microbiota-Gut-Brain Axis

  • Chapter
  • First Online:
Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((MICENDO,volume 817))

Abstract

Animal studies have demonstrated that the early phase of enteric infection is accompanied by anxiety-like behavior, which is mediated through vagal ascending pathways. Chronic infection alters gut function, including motility and visceral sensitivity, as well as feeding patterns, anxiety and depression-like behavior. These effects are likely immune-mediated, and involve changes in pro-inflammatory cytokines and altered metabolism of kynurenine/tryptophan pathways. Clinical studies have shown that chronic gastrointestinal infections lead to malnutrition and stunting, resulting in impaired cognitive function. Accumulating evidence suggests that in addition to pathogens, the commensal gastrointestinal microbiota also influences gut function and host’s behavior. Both animal and clinical studies have demonstrated changes in behavior and brain chemistry after induction of intestinal dysbiosis by administration of antibiotics. This concept of microbiota-gut-brain interactions opens a new field of research aimed at developing microbial-directed therapies to treat a broad spectrum of human conditions, including chronic gastrointestinal and psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BDNF:

Brain derived neurotrophic factor

CGRP:

Calcitonin gene-related peptide

CNS:

Central nervous system

CRP:

C-reactive protein

DGGE:

Denaturing gradient gel electrophoresis

ENS:

Enteric nervous system

GABA:

γ-Aminobutyric acid

GBA:

Gut brain axis

IBD:

Inflammatory bowel diseases

IBS:

Irritable bowel syndrome

IDO:

Indoleamine 2,3-dioxygenase

IFN-γ:

Interferon-gamma

IQ:

Intelligence quotient

MPO:

Myeloperoxidase activity

NMDA:

N-methyl-d-aspartate

SCFA:

Short chain fatty acids

SP:

Substance P

TLR4:

Toll-like receptor 4

TNF-α:

Tumor necrosis factor alpha

References

  1. Boivin M (2001) Socioeconomic impact of irritable bowel syndrome in Canada. Can J Gastroenterol 15(Suppl B):8B–11B

    Google Scholar 

  2. Sandler RS, Everhart JE, Donowitz M, Adams E, Cronin K, Goodman C et al (2002) The burden of selected digestive diseases in the United States. Gastroenterology 122(5):1500–1511

    Article  PubMed  Google Scholar 

  3. Whitehead WE, Palsson O, Jones KR (2002) Systematic review of the comorbidity of irritable bowel syndrome with other disorders: what are the causes and implications? Gastroenterology 122(4):1140–1156

    Article  PubMed  Google Scholar 

  4. Bonaz BL, Bernstein CN (2013) Brain-gut interactions in inflammatory bowel disease. Gastroenterology 144(1):36–49

    Article  PubMed  Google Scholar 

  5. Graff LA, Walker JR, Bernstein CN (2009) Depression and anxiety in inflammatory bowel disease: a review of comorbidity and management. Inflamm Bowel Dis 15(7):1105–1118

    Article  PubMed  Google Scholar 

  6. Tracey KJ (2002) The inflammatory reflex. Nature 420(6917):853–859

    Article  CAS  PubMed  Google Scholar 

  7. Ghia JE, Blennerhassett P, El-Sharkawy RT, Collins SM (2007) The protective effect of the vagus nerve in a murine model of chronic relapsing colitis. Am J Physiol Gastrointest Liver Physiol 293(4):G711–G718

    Article  CAS  PubMed  Google Scholar 

  8. Ghia JE, Blennerhassett P, Kumar-Ondiveeran H, Verdu EF, Collins SM (2006) The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 131(4):1122–1130

    Article  PubMed  Google Scholar 

  9. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X et al (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23(12):1132–1139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10(11):735–742

    Article  CAS  PubMed  Google Scholar 

  11. Irwin MR, Miller AH (2007) Depressive disorders and immunity: 20 years of progress and discovery. Brain Behav Immun 21:374–383

    Article  CAS  PubMed  Google Scholar 

  12. Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 27(1):24–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Frasure-Smith N, Lespérance F (2006) Depression and coronary artery disease. Herz 31(Suppl 3):64–68

    PubMed  Google Scholar 

  14. Bruce TO (2008) Comorbid depression in rheumatoid arthritis: pathophysiology and clinical implications. Curr Psychiatry Rep 10(3):258–264

    Article  PubMed  Google Scholar 

  15. Mikkelsen RL, Middelboe T, Pisinger C, Stage KB (2004) Anxiety and depression in patients with chronic obstructive pulmonary disease (COPD). A review. Nord J Psychiatry 58(1):65–70

    Article  PubMed  Google Scholar 

  16. Lustman PJ, Clouse RE (2005) Depression in diabetic patients: the relationship between mood and glycemic control. J Diabetes Complications 2:113–122

    Google Scholar 

  17. Elfferich MD, Nelemans PJ, Ponds RW, De Vries J, Wijnen PA, Drent M (2010) Everyday cognitive failure in sarcoidosis: the prevalence and the effect of anti-TNF-alpha treatment. Respiration 80(3):212–219

    Article  CAS  PubMed  Google Scholar 

  18. Raftery G, He J, Pearce R, Birchall D, Newton JL, Blamire AM, Isaacs JD (2012) Disease activity and cognition in rheumatoid arthritis: an open label pilot study. Arthritis Res Ther 14(6):R263 (Epub ahead of print)

    Google Scholar 

  19. Kohman RA, Rhodes JS (2013) Neurogenesis, inflammation and behavior. Brain Behav Immun 27(1):22–32

    Article  CAS  PubMed  Google Scholar 

  20. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Renault PF, Hoofnagle JH, Park Y, Mullen KD, Peters M, Jones DB, Rustgi V, Jones EA (1987) Psychiatric complications of long-term interferon alfa therapy. Arch Intern Med 147:1577–1580

    Article  CAS  PubMed  Google Scholar 

  22. Keefe B (2007) Interferon-induced depression in hepatitis C: an update. Curr Psychiatry Rep 9:255–261

    Article  PubMed  Google Scholar 

  23. O’Connor JC, André C, Wang Y, Lawson MA, Szegedi SS, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J Neurosci 29(13):4200–4209

    Article  PubMed Central  PubMed  Google Scholar 

  24. Wirleitner B, Neurauter G, Schrocksnadel K, Frick B, Fuchs D (2003) Interferon-gamma-induced conversion of tryptophan: immunologic and neuropsychiatric aspects. Curr Med Chem 10:1581–1591

    Article  CAS  PubMed  Google Scholar 

  25. Capuron L, Neurauter G, Musselman DL, Lawson DH, Nemeroff CB, Fuchs D, Miller AH (2003) Interferon-alpha-induced changes in tryptophan metabolism: relationship to depression and paroxetine treatment. Biol Psychiatry 54(9):906–914

    Article  CAS  PubMed  Google Scholar 

  26. O’Connor JC, Lawson MA, André C, Briley EM, Szegedi SS, Lestage J, Castanon N, Herkenham M, Dantzer R, Kelley KW (2009) Induction of IDO by bacille Calmette-Guérin is responsible for development of murine depressive-like behavior. J Immunol 182(5):3202–3212

    Article  PubMed Central  PubMed  Google Scholar 

  27. Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A, Lalla D, Woolley M, Jahreis A, Zitnik R, Cella D, Krishnan R (2006) Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet 367(9504):29–35

    Article  CAS  PubMed  Google Scholar 

  28. Kekow J, Moots R, Khandker R, Melin J, Freundlich B, Singh A (2011) Improvements in patient-reported outcomes, symptoms of depression and anxiety, and their association with clinical remission among patients with moderate-to-severe active early rheumatoid arthritis. Rheumatology (Oxford) 50(2):401–409

    Article  Google Scholar 

  29. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, Haroon E, Miller AH (2013) A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. Arch Gen Psychiatry 70(1):31–41

    CAS  Google Scholar 

  30. Eppig C, Fincher CL, Thornhill R (2010) Parasite prevalence and the worldwide distribution of cognitive ability. Proc Biol Sci 277(1701):3801–3808

    Article  PubMed Central  PubMed  Google Scholar 

  31. Nokes C, Grantham-McGregor SM, Sawyer AW, Cooper ES, Bundy DA (1992) Moderate to heavy infections of Trichuris trichiura affect cognitive function in Jamaican school children. Parasitology 104(Pt 3):539–547

    Article  PubMed  Google Scholar 

  32. Lorntz B, Soares AM, Moore SR, Pinkerton R, Gansneder B, Bovbjerg VE, Guyatt H, Lima AM, Guerrant RL (2006) Early childhood diarrhea predicts impaired school performance. Pediatr Infect Dis J 25(6):513–520

    Article  PubMed  Google Scholar 

  33. Niehaus MD, Moore SR, Patrick PD, Derr LL, Lorntz B, Lima AA, Guerrant RL (2002) Early childhood diarrhea is associated with diminished cognitive function 4 to 7 years later in children in a northeast Brazilian shantytown. Am J Trop Med Hyg 66(5):590–593

    PubMed  Google Scholar 

  34. Checkley W, Buckley G, Gilman RH, Assis AM, Guerrant RL, Morris SS, Mølbak K, Valentiner-Branth P, Lanata CF, Black RE, Childhood Malnutrition and Infection Network (2008) Multi-country analysis of the effects of diarrhoea on childhood stunting. Int J Epidemiol 37(4):816–830

    Article  PubMed Central  PubMed  Google Scholar 

  35. Mendez MA, Adair LS (1999) Severity and timing of stunting in the first two years of life affect performance on cognitive tests in late childhood. J Nutr 129(8):1555–1562

    CAS  PubMed  Google Scholar 

  36. Lyte M, Varcoe JJ, Bailey MT (1998) Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation. Physiol Behav 65(1):63–68

    Article  CAS  PubMed  Google Scholar 

  37. Goehler LE, Gaykema RP, Opitz N, Reddaway R, Badr N, Lyte M (2005) Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 19(4):334

    Article  PubMed  Google Scholar 

  38. BercĂ­k P, De Giorgio R, Blennerhassett P, VerdĂº EF, Barbara G, Collins SM (2002) Immune-mediated neural dysfunction in a murine model of chronic Helicobacter pylori infection. Gastroenterology 123(4):1205–1215

    Google Scholar 

  39. Bercik P, VerdĂº EF, Foster JA, Lu J, Scharringa A, Kean I, Wang L, Blennerhassett P, Collins SM (2009) Role of gut-brain axis in persistent abnormal feeding behavior in mice following eradication of Helicobacter pylori infection. Am J Physiol Regul Integr Comp Physiol 296(3):R587–R594

    Article  CAS  PubMed  Google Scholar 

  40. BercĂ­k P, Wang L, VerdĂº EF, Mao YK, Blennerhassett P, Khan WI, Kean I, Tougas G, Collins SM (2004) Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction. Gastroenterology 127(1):179–187

    Article  PubMed  Google Scholar 

  41. Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, Malinowski P, Jackson W, Blennerhassett P, Neufeld KA, Lu J, Khan WI, Corthesy-Theulaz I, Cherbut C, Bergonzelli GE, Collins SM (2010) Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139(6):2102–2112

    Article  CAS  PubMed  Google Scholar 

  42. Tomé AM, Filipe A (2011) Quinolones: review of psychiatric and neurological adverse reactions. Drug Saf 34(6):465–488

    Article  PubMed  Google Scholar 

  43. Silber TJ, D’Angelo L (1985) Psychosis and seizures following the injection of penicillin G procaine. Hoigne’s syndrome. Am J Dis Child 139(4):335–337

    Article  CAS  PubMed  Google Scholar 

  44. Cummings JL, Barritt CF, Horan M (1986) Delusions induced by procaine penicillin: case report and review of the syndrome. Int J Psychiatry Med 16(2):163–168

    Article  PubMed  Google Scholar 

  45. Reeves RR (1992) Ciprofloxacin-induced psychosis. Ann Pharmacother 26:930–931

    CAS  PubMed  Google Scholar 

  46. McCue JD, Zandt JR (1991) Acute psychoses associated with the use of ciprofloxacin and trimethoprim-sulfamethoxazole. Am J Med 90(4):528–529

    Article  CAS  PubMed  Google Scholar 

  47. Gomez-Gil E, Garcia F, Pintor L et al (1999) Clarithromycin-induced acute psychoses in peptic ulcer disease. Eur J Clin Microbiol Infect Dis 18:70–71

    Article  CAS  PubMed  Google Scholar 

  48. Wamer A (2000) Clarithromycin: a precipitant for acute psychotic stress [letter]. Psychosomatics 41:539

    Google Scholar 

  49. Weis S, Karagulle D, Kornhuber J et al (2006) Cotrimoxazole-induced psychosis: a case report and review of the literature. Pharmacopsychiatry 39:236–238

    Article  CAS  PubMed  Google Scholar 

  50. Kass JS, Shandera WX (2010) Nervous system effects of antituberculosis therapy. CNS Drugs 24(8):655–667

    Article  CAS  PubMed  Google Scholar 

  51. Alao AO, Yolles JC (1998) Isoniazid-induced psychosis. Ann Pharmacother 32(9):889–891

    Article  CAS  PubMed  Google Scholar 

  52. Shujaath M (2010) Antibiotic-induced psychosis: a link to d-alanine? Med Hypotheses 75(6):676–677

    Article  Google Scholar 

  53. Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C (2012) γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113(2):411–417

    Article  CAS  PubMed  Google Scholar 

  54. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, Koga Y, Sudo N (2012) Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 303(11):G1288–G1295

    Article  CAS  PubMed  Google Scholar 

  55. Van Oudenhove L, McKie S, Lassman D et al (2011) Fatty acid-induced gut-brain signaling attenuates neural and behavioral effects of sad emotion in humans. J Clin Invest 121:3094–3099

    Article  PubMed Central  PubMed  Google Scholar 

  56. Perez-Cobas AE, Artacho A, Knecht H, Ferrus ML, Friedrichs A, Ott SJ et al (2013) Differential effects of antibiotic therapy on the structure and function of human gut microbiota. PLoS One 8(11):e80201

    Article  PubMed Central  PubMed  Google Scholar 

  57. Verdu EF, Bercik P, Verma-Gandhu M, Huang XX, Blennerhassett P, Jackson W et al (2006) Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut 55(2):182–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Anitha M, Vijay-Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S (2012) Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 143(4):1006–1016 e1004

    Google Scholar 

  59. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J et al (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141(2):599–609, 609 e591–593

    Google Scholar 

  60. Ferrer M, Martins Dos Santos VA, Ott SJ, Moya A (2013) Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut Microbes 5(1)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Premysl Bercik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Bercik, P., Collins, S.M. (2014). The Effects of Inflammation, Infection and Antibiotics on the Microbiota-Gut-Brain Axis. In: Lyte, M., Cryan, J. (eds) Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology(), vol 817. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0897-4_13

Download citation

Publish with us

Policies and ethics