Skip to main content

The Multicellular Tumor Spheroid: A Quantitative Model for Studies of in Situ Immunity

  • Chapter
In Situ Expression of Tumor Immunity

Part of the book series: Contemporary Topics in Immunobiology ((CTI,volume 10))

  • 24 Accesses

Abstract

Current knowledge of the basic cellular events associated with the immune response to solid tumors is severely limited by the lack of availability of model systems that adequately reflect the complexity of the environment in situ. Thus, while a number of investigators have isolated and partially purified cells and immunoglobulins from tumors for the purpose of testing their effector functions in vitro (this volume), such studies do not directly pertain to the question of whether or not such mechanisms may be operative within the tumor itself. Indeed it is clear from a number of studies that solid tumors differ from dissociated suspensions of tumor cells in a variety of ways apart from obvious differences in geometry. For example, the concentration of critical metabolites such as oxygen and glucose (as well as toxic waste products) is diffusion-limited in solid tumors, resulting in necrotic areas at distances sufficiently removed from the vascular supply (Thomlinson and Gray, 1955; Tannock, 1968). Similar considerations may account for the fact that solid neoplasms have been found to contain an appreciable fraction of tumor cells that progress through the cell cycle either very slowly or not at all (reviewed in Baserga, 1971). These and other factors have been shown to give rise to heterogeneity in the response of solid tumors to experimental radiotherapy and chemotherapy (Gray et al., 1953; Kaplan, 1974), and similar effects of microenvironment on immune responses might be anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baserga, R., 1971, The Cell Cycle and Cancer, Marcel Dekker, New York.

    Google Scholar 

  • Carlsson, J., and Brunk, U., 1977, The fine structure of three-dimensional colonies of human glioma cells in agarose culture, Acta Pathol. Microbiol. Scand. Sect. A 85: 183.

    Google Scholar 

  • Carrel, S., Sordat, B., and Merenda, C., 1976, Establishment of a cell line (Co-115) from a human colon carcinoma transplanted into nude mice, Cancer Res. 36: 3978.

    PubMed  CAS  Google Scholar 

  • Cerottini, J. -C., and Brunner, K. T., 1974, Cell-mediated cytotoxicity, allograft rejection and tumor immunity, Adv. Immunol. 18: 67.

    Article  PubMed  CAS  Google Scholar 

  • Dalen, H., and Burki, H. J., 1971, Some observations on the three-dimensional growth of L5178Y cell-colonies in soft agar culture, Exp. Cell Res. 65: 433.

    Article  PubMed  CAS  Google Scholar 

  • Dethlefsen, L. A., Prewitt, J. M. S., and Mendelsohn, M. A., 1968, Analysis of tumor growth curves, J. Natl. Cancer Inst. 40: 389.

    PubMed  CAS  Google Scholar 

  • Folkman, J., 1974, Tumor angiogenesis, Adv. Cancer Res. 19: 331.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J., and Hochberg, M., 1973, Self-regulation of growth in three dimensions, J. Exp. Med. 138: 745.

    Article  PubMed  CAS  Google Scholar 

  • Gray, L. H., Conger, A. D., Ebert, M., Hornsey, S., and Scott, O. C. A., 1953, Concentration of oxygen dissolved in tissues at time of irradiation as factor in radiotherapy, Br. J. Radio!. 26: 638.

    Article  CAS  Google Scholar 

  • Haji-Karim, M., and Carlsson, J., 1978, Proliferation and viability in cellular spheroids of human origin, Cancer Res. 38: 1457.

    PubMed  CAS  Google Scholar 

  • Harris, J. W., 1976, The effect of tumor-like assay conditions, ionizing radiation, and hyperthermia on immune lysis of tumor cells by cytotoxic T-lymphocytes, Cancer Res. 36: 2733.

    PubMed  CAS  Google Scholar 

  • Häyry, P., 1976, Problems and prospects in surgical immunology, Med. Biol. 54: 1.

    PubMed  Google Scholar 

  • Kaplan, H. S., 1974, On the relative importance of hypoxic cells for the radiotherapy of human tumors, Eur. J. Cancer 10: 275.

    PubMed  CAS  Google Scholar 

  • Lees, R. K., Bogenmann, E., Sordat, B., MacDonald, H. R., and Carrel, S., 1979, Growth of multicellular tumor spheroids of human origin, Experientie 35: 970.

    Google Scholar 

  • Lord, E. M., 1979, Comparison of in situ and peripheral host immunity to syngeneic tumors employing the multicellular spheroid model, Proc. 9th L. H. Gray Conf.,in press.

    Google Scholar 

  • Lord, E. M., Penney, D. P., Sutherland, R. M., and Cooper, R. A., 1979, Morphological and functional characteristics of cells infiltrating and destroying tumor multicellular spheroids in vivo, Virchows Arch. B 31: 103.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, H. R., and Howell, R. L., 1978, The multicellular spheroid as a model tumor allo-graft. I. Quantitative assessment of spheroid destruction in alloimmune mice, Transplantation 25: 136.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, H. R., Howell, R. L., and McFarlane, D. L., 1978, The multicellular spheroid as a model tumor allograft. II. Characterization of spheroid-infiltrating cytotoxic cells, Transplantation 25: 141.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, H. R., Sutherland, R. M., Howell, R. L., and McCredie, J. A., 1976, Cytotoxic T lymphocyte function under conditions simulating the microenvironment of solid tumors, Proc. Am. Assoc. Cancer Res. 17: 221.

    Google Scholar 

  • McAllister, R. M., Reed, G., and Huebner, R. J., 1967, Colonial growth in agar of cells derived from adenovirus-induced hamster tumors, J. Natl. Cancer Inst. 39: 43.

    PubMed  CAS  Google Scholar 

  • Medawar, P. B., 1944, Behaviour and fate of skin autografts and skin homografts in rabbits, J. Anat. 78: 176.

    PubMed  CAS  Google Scholar 

  • Roberts, P. J., and Häyry, P., 1977, Effector mechanisms in allograft rejection. II. Density, electrophoresis and size fractionation of allograft-infiltrating cells demonstrating several classes of killer cells, Cell Immunol. 30: 236.

    Article  PubMed  CAS  Google Scholar 

  • Rockwell, S. C., Kallman, R. F., and Fajardo, L. F., 1972, Characteristics of a serially transplanted mouse mammary tumor and its tissue-culture-adapted derivative, J. Natl. Cancer Inst. 49: 735.

    PubMed  CAS  Google Scholar 

  • Ryser, J.-E., Sordat, B., Cerottini, J.-C., and Brunner, K. T., 1977, Mechanism of target cell lysis by cytolytic T lymphocytes. I. Characterization of specific lymphocyte-target cell conjugates separated by velocity sedimentation, Eur. J. Immunol. 7: 110.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson, C. J., 1976, Morphological studies of cell death by time-lapse microcinematography, Proc. R. Soc. London, Ser. B 192: 241.

    CAS  Google Scholar 

  • Simonsen, M., Buemann, A., Gammeltaft, F., Jensen, F., and Jorgensen, K., 1953, Biological incompatibility in kidney transplantation in dogs. I. Experimental and morphological investigations, Acta Pathol. Microbiol. Scand. 32: 1.

    Article  PubMed  CAS  Google Scholar 

  • Sordat, B., MacDonald, H. R., and Lees, R. K., 1980, The multicellular spheroid as a model tumor allograft. III. Morphological and kinetic analysis of spheroid infiltration and destruction, Transplantation 29: 103.

    Article  PubMed  CAS  Google Scholar 

  • Strom, T. B., Tilney, N. L., Paradysz, J. M., Bancewicz, J., and Carpenter, C. B., 1977, Cellular components of allograft rejection: Identity, specificity, and cytotoxic function of cells infiltrating acutely rejecting allografts, J. Immunol. 118: 2020.

    PubMed  CAS  Google Scholar 

  • Sutherland, R. M., and Durand, R. E., 1976, Radiation response of multicell spheroids—An in vitro tumour model, Curr. Top. Radiat. Res. Q. 11: 87.

    PubMed  CAS  Google Scholar 

  • Sutherland, R. M., McCredie, J. A., and Inch, W. R., 1971, Growth of multicell spheroids in tissue culture as a model of nodular carcinomas, J. Natl. Cancer Inst. 46: 113.

    PubMed  CAS  Google Scholar 

  • Sutherland, R. M., MacDonald, H. R., and Howell, R. L., 1977, Multicellular spheroids: A new model target for in vitro studies of immunity to solid tumor allografts, J. Natl. Cancer Inst. 58: 1849.

    PubMed  CAS  Google Scholar 

  • Tannock, I. F., 1968, The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour, Br. J. Cancer 22: 258.

    Article  PubMed  CAS  Google Scholar 

  • Thomlinson, R. H., and Gray, L. H., 1955, The histological structure of some human lung cancers and the possible implications for radiotherapy, Br, J. Cancer 9: 539.

    Article  CAS  Google Scholar 

  • Twentyman, P. R., 1978, The growth of the EMT6 tumour in the lungs of Balb C mice following intravenous inoculation of tumour cells from culture, Cell Tissue Kinet. 11: 57.

    PubMed  CAS  Google Scholar 

  • Watson, J. V., 1976, The cell proliferation kinetics of the EMT6/M/AC mouse tumour at four volumes during unperturbed growth in vivo, Cell Tissue Kinet. 9: 147.

    PubMed  CAS  Google Scholar 

  • Wiktorowicz, K., Roberts, P. J., and Häyry, P., 1978, Effector mechanisms in allograft rejection. IV. In contrast to late cytotoxic cells, the early killer cells infiltrating mouse sponge matrix allografts are predominantly T lymphocytes, Cell. Immunol. 38: 255.

    Google Scholar 

  • Yuhas, J. M., Li, A. P., Martinez, A. O., and Ladman, A. J., 1977, A simplified method for production and growth of multicellular tumor spheroids, Cancer Res. 37: 3639.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

MacDonald, H.R., Sordat, B. (1980). The Multicellular Tumor Spheroid: A Quantitative Model for Studies of in Situ Immunity. In: Witz, I.P., Hanna, M.G. (eds) In Situ Expression of Tumor Immunity. Contemporary Topics in Immunobiology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3677-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3677-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3679-2

  • Online ISBN: 978-1-4684-3677-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics